以聚偏氟乙烯(PVDF)中空纤维微滤膜为模板, 通过化学镀制备Ni/PVDF纤维, 再经原位水热合成得到ZSM-5/Ni/PVDF纤维, 最后经高温焙烧制得ZSM-5/Ni中空纤维. 用SEM、EDX、XRD、BET、VSM和TG等对样品进行了表征. 考察了水热处理次数和温度对ZSM-5沸石在Ni-P镀层上负载的影响, 结果表明: 化学镀能制得Ni/PVDF纤维, 其磁性可控. 在150℃下两次水热处理Ni/PVDF纤维24h可在镀层上得到致密连续的沸石层, 控制水热处理温度可以控制镀层表面沸石层的厚度. 在550℃的空气气氛中焙烧ZSM-5/Ni/PVDF纤维可以得到完整的ZSM-5/Ni中空纤维, 150℃下两次水热处理24h得到的ZSM-5/Ni纤维, 焙烧后其饱和磁化强度由9.3A·m2/kg提高到20.3A·m2/kg, 其比表面积为108m2/g.
Magnetic ZSM-5/Ni hollow fibers were synthesized by first growing ZSM-5 layers on Ni/PVDF hollow fibers, which were prepared by electroless plating on poly(vinylidene fluoride) (PVDF) hollow fiber microfiltration membranes, followed by calcination in air at 550℃ for 4h. The samples were characterized by SEM, EDX, XRD, BET, vibrating sample magnetometer (VSM) and TG. The effects of hydrothermal synthesis cycles and temperature on the coating of ZSM-5 crystals on the surfaces of the Ni/PVDF hollow fibers were examined. The results indicate that the thickness of the nickel layer can be regulated by controlling the plating time. A continuous ZSM-5 film can be obtained by hydrothermal treatment twice at 150℃ for 24h. The thickness of the zeolite film can be regulated by controlling the reaction temperature. The saturation magnetization values of the magnetic ZSM-5/Ni hollow fibers prepared after hydrothermal treatment twice at 150℃ for 24h are 9.3A·m2/kg and 20.3A·m2/kg before and after calcination, respectively. The BET specific surface area of the calcined sample is 108m2/g.
[1] Bourlinos A B, Zboril R, Petridis D. Micropor. Mesopor. Mater., 2003, 58 (2): 155-162.
[2] Schmauke T, Menzel M, Roduner E. J. Mol. Catal. A: Chem., 2003, 194 (1-2): 211-225.
[3] Oliveira L C A, Petkowicz D I, Smaniotto A, et al. Water Res., 2004, 38 (17): 3699-3704.
[4] Shan W, Yu T, Wang B, et al. Chem. Mater., 2006, 18 (14): 3169-3172.
[5] Ren N, Yang Y H, Zhang Y H, et al. J. Catal., 2007, 246 (1): 215-222.
[6] Valtchev V, Schoeman B J, Hedlund J, et al. Zeolites, 1996, 17 (5-6): 408-415.
[7] Song W, Kanthasamy R, Grassian V H, et al. Chem. Commun., 2004, 17: 1920-1921.
[8] Liu W W, Zeng C F, Zhang L X, et al. Materials Mater. Chem. Phys., 2007, 103 (2-3): 508-514.
[9] Zhang B J, Davis S A, Neil H, et al. Chem. Commun., 2000, 9: 781-782.
[10] Dong A G, Wang Y J, Tang Y, et al. Adv. Mater., 2002, 14 (12): 926-929.
[11] Bouizi Y, Rouleau L, Valtchev V P. Chem. Mater., 2006, 18 (20): 4959-4966.
[12] 胡文彬, 刘 磊, 忤亚婷. 难镀基材的化学镀镍技术, 第一版.北京: 化学工业出版社, 2003. 116-117.
[13] 杜金红, 苏 革, 白 朔. 等, 新型炭材料, 2000, 15 (4): 49-53.
[14] Yan Y S, Davis M E, Gavalas G R. Ind. Eng. Chem. Res., 1995, 34 (5): 1652-1661.
[15] Mintova S, H\ddot{ olzl M, Valtchev V, et al. Chem. Mater., 2004, 16 (25): 5452-5459.
[16] Chen C K, Feng H M, Lin H C, et al. Thin Solid Films, 2002, 416 (1-2): 31-37.