采用固相反应和真空烧结技术制备了掺杂浓度为1.0at%的Nd:YAG透明陶瓷样品, 并测试了样品的吸收光谱和荧光光谱. 样品在主吸收峰808nm处的吸收截面为3.10×10-20cm2, 主荧光发射峰位于1064nm处, 实测荧光寿命为257μs. 应用Judd-Ofelt理论计算了Nd3+在YAG中的强度参数Ωλ(λ=2, 4, 6)、跃迁的振子强度、自发辐射跃迁几率、辐射寿命、荧光分支比等光谱参数. 最后计算得到Nd:YAG透明陶瓷中Nd3+: 4F3/2→4I11/2跃迁对应的受激发射截面大小为3.81×10-19cm2. 结果表明: Nd:YAG透明陶瓷具有较大的受激发射截面和高的荧光量子效率(接近100%), 是一种性能优良的激光材料.
李江
,
杨志勇
,
吴玉松
,
刘文斌
,
潘裕柏
,
黄莉萍
,
郭景坤
. Nd3+离子掺杂YAG激光透明陶瓷的光谱性质及Judd-Ofelt理论分析[J]. 无机材料学报, 2008
, 23(3)
: 429
-433
.
DOI: 10.3724/SP.J.1077.2008.00429
Neodymium-doped yttrium aluminum garnet (Nd:YAG) transparent ceramic with doping concentration of 1.0at% was fabricated by a solid state reaction method and vacuum sintering. The absorption spectrum and the fluorescence spectrum of the sample were measured. The highest absorption peak is centered at 808nm and the absorption cross section is 3.1×10-20cm2. The main emission peak is at 1064nm, and the fluorescence lifetime is 257μs. The Judd-Ofelt intensity parameter Ωλ(λ=2, 4, 6), spontaneous transition probability, fluorescence branching ratio and radiative lifetime of Nd3+ were calculated by Judd-Ofelt theory. Finally, the stimulated emission cross section of 4F3/2→4I11/2 transition calculated is 3.81×10-19cm2. It is found that the prepared Nd:YAG transparent ceramic has large stimulated emission cross section and high fluorescence quantum efficiency, which is a potentially excellent laser material.
[1] Ikesue A, Kinoshita T, Kamata K, et al. J. Am. Ceram. Soc., 1995, 78 (4): 1033--1040.
[2] Lu J, Song J, Prabhu M, et al. Jpn. J. Appl. Phys., 2000, 39 (10B): L1048--L1050.
[3] Lu J, Ueda K, Yagi H, et al. J. Alloy Comp., 2002, 341 (1--2): 220--225.
[4] 李江, 潘裕柏, 张俊计, 等(LI Jiang, et al). 硅酸盐学报
(Journal of the Chinese Ceramic Society), 2003, 31 (5): 490--493.
[5] Wen L, Sun X D, Xiu Z M, et al. J. Eur. Ceram. Soc., 2004, 24 (9): 2681--2688.
[6] 卢利平, 刘景和, 藏春和, 等(LU Li-Ping, et al). 硅酸盐学报(Journal the Chinese Ceramic Society), 2004, 32 (10): 1252--1255.
[7] Li J, Wu Y S, Pan Y B, et al. J. Non-Cryst. Solids, 2006, 352 (23--25): 2404--2407.
[8] Wu Y S, Li J, Pan Y B, et al. Ceram. Int., 2006, 32 (7): 785--788.
[9] 李长青, 左洪波, 张明福, 等(LI Changqing, et al). 硅酸盐学报
(Journal of the Chinese Ceramic Society), 2006, 34 (8): 979--984.
[10] Li J, Pan Y B, Qiu F G, et al. Ceram. Int., 2007, 33 (6): 1047--1052.
[11] Li J, Pan Y B, Qiu F G, et al. Ceram. Int., 2008, 34 (1): 141--149.
[12] Li X, Li Q, Wang J Y, et al. Opt. Mater., 2007, 29 (5): 528--531.
[13] 李江, 吴玉松, 潘裕柏, 等. 发光学报, 2007, 28 (2): 219--224.
[14] 潘裕柏, 徐军, 吴玉松, 等 (PAN Yubai, et al). 无机材料学报
(Journal of Inorganic Materials), 2006, 21 (5): 1278--1280.
[15] 李江, 吴玉松, 潘裕柏, 等(LI Jiang, et al). 无机材料学报
(Journal of Inorganic Materials), 2007, 22 (5): 798--802.
[16] Wu Y S, Li J, Pan Y B, et al. J. Am. Ceram. Soc., 2007, 90 (5): 1629--1631. [17] Judd B R. it Phys. Rev., 1962, 127 (3): 750--759.
[18] Ofelt G S. it J. Chem. Phys., 1962, 37 (3): 511--520.