研究论文

氧化亚铜/碳纳米管超细复合球的合成及性能研究

  • 潘伟英 ,
  • 陈小华 ,
  • 许龙山
展开
  • 湖南大学材料科学与工程学院, 长沙 410082

收稿日期: 2007-04-17

  修回日期: 2007-06-18

  网络出版日期: 2008-03-20

Synthesis and Properties of Cuprous Oxide/Carbon Nanotubes Composite Superfine Spheres

  • PAN Wei-Ying ,
  • CHEN Xiao-Hua ,
  • XU Long-Shan
Expand
  • College of Materials Science and Engineering, Hunan University, Changsha 410082, China

Received date: 2007-04-17

  Revised date: 2007-06-18

  Online published: 2008-03-20

摘要

采用溶液法原位制备了氧化亚铜/多壁碳纳米管(Cu2O/MWNTs)超细复合球. 通过扫描隧道显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、紫外-可见分光光度计(UV-vis)和差热分析(DSC)等手段对产品进行了形貌分析和性能检测. 结果表明: 碳纳米管均匀嵌镶在Cu2O球中; 相比于同粒径纯Cu2O球, 复合球的特征吸收峰发生蓝移, 复合球使高氯酸铵(AP)的高温分解温度进一步降低了11.5℃. 另外, 对复合球的形貌影响因素及生长机理进行了探讨, 发现明胶是复合物成球的关键, 而聚乙二醇影响复合球粒径的均匀性.

本文引用格式

潘伟英 , 陈小华 , 许龙山 . 氧化亚铜/碳纳米管超细复合球的合成及性能研究[J]. 无机材料学报, 2008 , 23(2) : 403 -407 . DOI: 10.3724/SP.J.1077.2008.00403

Abstract

Cuprous oxide/ carbon nanotubes (Cu2O/MWNTs) composite superfine spheres were fabricated in situ by solution method. The products were characterized via scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction pattern (XRD), UV-vis absorption spectrum and differential scanning calorimetry (DSC). The results show that the MWNTs are
embedded in cuprous oxide spheres homogeneously. Compared with pure Cu2O particle, the absorption peak of composite spheres has a tendency of blue shift, and the temperature of high temperature decomposition of ammonium perchlorate (AP) is further decreased by 11.5℃ when composite spheres act as the catalyst. In addition, the main influence on morphology and the formation mechanism of composite spheres are investigated. Results suggest that the gelatin play a key role in forming spheres and polyethylene glycol have great impact on the uniformity of spheres size.

参考文献

[1] Shen M Y, Yokouchi T, Koyama S, et al. Phys. Rev. B, 1997, 56 (20): 13066--13072.
[2] Bohannan E W, Shumsky M G, Switzer J A. Chem. Mater., 1999, 11 (9): 2289--2291.
[3] Ivan Grozdanov. Mater. Lett., 1994, 19 (5--6): 281--285.
[4] Michikazu Hara, Takeshi Kondo, Mutsuko Komoda, et al. Chem. Commun., 1998, (3): 357--358.
[5] Jorge Ramírez-Ortiz, Tetsuya Ogura, Jorge Medina-Valtierra, et al. Appl. Surf. Sci., 2001, 174 (3--4): 177--184.
[6] 朱俊武, 王艳萍, 张莉莉, 等. 材料科学与工程学报, 2006, 24 (2): 209--211.
[7] Musa I, Baxendale M, Amaratunga, et al. Synthetic Materials, 1999, 102 (3): 1250--1252.
[8] 许龙山, 陈小华, 陈传盛, 等(XU Long-Shan, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (2): 309--314.
[9] Dong S R, Tu J P, Zhang X B. Mat. Sci. Eng. A, 2001, 313 (1--2): 83--87.
[10] Zhan G D, Joshua D Kuntz, Javier E, et al. Appl. Phys. Lett., 2003, 83 (6): 1228--1230.
[11] Philippe S, Massimiliano C, Philippe K. Applied Catalysis A: General, 2003, 253 (2): 337--358.
[12] Yu Y, Ma L L, Huang W Y, et al. Carbon, 2005, 43 (3): 670--673.
[13] Joint Committee on Powder Diffraction Standards, Diffraction Data File, No. 5-666, ICDD International Center for Diffraction Data (formerly JCPDS), Pennsylvania, USA, 1979.
[14] 周 涛, 岳 军, 王 越, 等. 化学物理学报, 2004, 17 (6): 729--734.
[15] Choon H, Bernard N, Wai Y F. J. Phys. Chem. B, 2006, 110 (42): 20801--20807.
[16] 陈宪宏, 陈小金, 钟文斌, 等. 湖南大学学报, 2006, 33 (5): 87--90.
[17] Lu C H, Qi L M, Yang J H, et al. Advanced Materials, 2005, 17 (21): 2562--2567.
文章导航

/