研究论文

树形分子包覆硫化镉量子点的抗老化性能研究

  • 丛日敏 ,
  • 罗运军 ,
  • 于怀清
展开
  • 1. 山东理工大学 材料科学与工程学院, 淄博 255049; 2. 北京理工大学 材料科学与工程学院, 北京 100081

收稿日期: 2007-04-05

  修回日期: 2007-05-12

  网络出版日期: 2008-03-20

Study on the Resistance to Aging of CdS Quantum Dots Encapsulated by PAMAM Dendrimers

  • CONG Ri-Min ,
  • LUO Yun-Jun ,
  • YU Huai-Qing
Expand
  • 1. School of Material Science and Engineering, Shandong University of Technology, Zibo 255049, China; 2. School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China

Received date: 2007-04-05

  Revised date: 2007-05-12

  Online published: 2008-03-20

摘要

以聚酰胺-胺树形分子为模板制备了平均粒径为2.5nm的CdS量子点, 采用HRTEM、EDS、UV-vis、PL等手段对样品进行表征, 研究了其在室温避光条件下的老化过程. 结果表明, CdS量子点在刚制备的前5d里UV-vis、PL谱峰半峰宽变窄, 发光效率迅速上升, 表明量子点以尺寸窄化生长为主; 5d后UV-vis、PL谱峰半峰宽逐渐宽化, 发光效率缓慢下降, 表明量子点以尺寸宽化(Ostwald 熟化)过程为主. 树形分子的配位作用和模板作用赋予CdS量子点良好的抗老化性能, 6个月后量子点粒径增量<0.3nm, PL强度约降低22%.

本文引用格式

丛日敏 , 罗运军 , 于怀清 . 树形分子包覆硫化镉量子点的抗老化性能研究[J]. 无机材料学报, 2008 , 23(2) : 379 -382 . DOI: 10.3724/SP.J.1077.2008.00379

Abstract

CdS quantum dots (QDs) of 2.5nm were prepared using G4.5 PAMAM dendrimer templates and characterized by HRTEM and EDS. The aging of synthesized QDs stored in the dark at room-temperature was studied through UV-vis and PL spectrophotometer. The width at half-maximum of the peak (WHM) of the UV-vis and PL spectra becomes narrower, meanwhile the PL intensity increases obviously during the first 5d. Afterwards, the WHM gets broader and the PL intensity decreases slowly during the following 6 months. The results suggest that CdS QDs show a size-focusing growth within the first 5d, but a size-defocusing growth in the following 6 months. However, the increment of CdS QDs size is less than 0.3nm, and the decrement of PL intensity is about
22% after 6 months of aging. The excellent resistance to aging of CdS QDs is attributed to the coordination and template effects of PAMAM dendrimers.

参考文献

[1] Coe S, Woo W K, Bawendi M G, et al. Nature, 2002, 420 (6917): 800--803.
[2] Bruchez M P, Noronne M, Gin P, et al. Science, 1998, 281 (5385): 2013--2016.
[3] Qu L, Peng X. J. Am. Chem. Soc., 2002, 124 (9): 2049--2055.
[4] Ridley B A, Nivi B, Jacobson J M. Science, 1999, 286 (5440): 746--749.
[5] Chan W C W, Nie S. Science, 1998, 281 (5385): 2016--2018.
[6] Talapin D V, Rogach A L, Kornowski A, et al. Nano Letter, 2001, 1 (4): 207--211.
[7] Wu X C, Bitter A M, Kern K. J. Phys. Chem. B, 2005, 109 (1): 230--239.
[8] Crooks R M, Zhao M, Sun L, et al. Acc. Chem. Res., 2001, 34 (3): 181--190.
[9] Lemon B I, Crooks R M. J. Am. Chem. Soc., 2000, 122 (51): 12886--12887.
[10] 丛日敏, 罗运军, 李国平, 等(CONG Ri-Min, et al). 化学学报(Acta Chimica Sinica), 2005, 63 (5): 421--426.
[11] 刘 萍, 房 华, 赵 明, 等(LIU Ping, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (6): 1417--1422.
[12] 崔艳霞. 北京: 北京理工大学硕士学位论文, 2003.
[13] Brus L. J. Phys. Chem., 1986, 90 (12): 2555--2560.
[14] Sugimoto T, et al. Adv. Colloid Interface Sci., 1987, 28 (1): 65--108.
[15] Peng X G, Wickham J, Alivisatos A P. J. Am. Chem. Soc., 1998, 120 (21): 5343--5344.
文章导航

/