研究论文

碳/碳复合材料表面粗糙度对成骨细胞生长行为的影响

  • 张磊磊 ,
  • 李贺军 ,
  • 李克智 ,
  • 李新涛 ,
  • 翟言强 ,
  • 张雨雷
展开
  • 西北工业大学材料学院, 西安 710072

收稿日期: 2007-04-25

  修回日期: 2007-06-07

  网络出版日期: 2008-03-20

Effect of Surface Roughness of Carbon/Carbon Composites on Osteoblasts

  • ZHANG Lei-Lei ,
  • LI He-Jun ,
  • LI Ke-Zhi ,
  • LI Xin-Tao ,
  • ZHAI Yan-Qiang ,
  • ZHANG Yu-Lei
Expand
  • School of Materials Science, Northwestern Polytechnical University, Xi’an 710072, China

Received date: 2007-04-25

  Revised date: 2007-06-07

  Online published: 2008-03-20

摘要

采用化学气相沉积工艺制备了碳/碳(C/C)复合材料, 用表面轮廓仪检测了表面粗糙度, 用MG-63成骨细胞进行了细胞试验, 研究了C/C复合材料表面粗糙度对成骨细胞形貌、粘附和增殖的影响规律. 结果表明: C/C复合材料表面粗糙度越高则成骨细胞在其表面的粘附率越高, 增殖率越低; C/C复合材料表面粗糙度对成骨细胞的生长方向和形貌具有诱导作用, 粗糙度越高则方向诱导作用越明显, 且细胞附着形貌呈梭形或长条状, 立体感强, 反之成骨细胞则呈现片状, 铺展状态好.

本文引用格式

张磊磊 , 李贺军 , 李克智 , 李新涛 , 翟言强 , 张雨雷 . 碳/碳复合材料表面粗糙度对成骨细胞生长行为的影响[J]. 无机材料学报, 2008 , 23(2) : 341 -345 . DOI: 10.3724/SP.J.1077.2008.00341

Abstract

The aim of this study is to investigate the role of surface roughness of carbon/carbon (C/C) composites on osteoblasts morphology, adhesion and proliferation. C/C composites were prepared by chemical vapor infiltration and three different values of surface roughness were created by treatment with two kinds of grinding paper and mechanical polishing. The
surface roughness of C/C composites was measured by Talysurf profilometer, and cell culture was performed with MG-63 osteoblasts. The adhesion rate, morphology and proliferation rate were assessed. The results show that the adhesion rate increase and the proliferation rate decrease with the increase of roughness. The orientation of the osteoblasts is affected by the roughness, the higher the roughness, the greater the effect. As surface roughness increasing, the morphology of the osteoblasts changes from shuttle and strip shape to slice shape.

参考文献

[1] 李贺军(LI He-jun). 新型碳材料(New Carbon Materials), 2001, 16 (2): 79--80.
[2] 徐国忠, 李贺军, 白瑞成, 等(XU Guo-Zhong, et al). 无机材料学报
(Journal of Inorganic Materials), 2006, 21 (6): 1385--1390.
[3] 熊信柏, 李贺军, 李克智, 等(XIONG Xin-bo, et al). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2003, 32 (11): 923--926.
[4] Linez-Batailon P, Monchau F, Bigerelle M, et al. Biomolecular Engineering, 2002, 19 (2--6): 133--141.
[5] Borsari Veronica, Giavaresi Gianluca, Fini Milena, et al. Biomaterials, 2005, 26 (24): 4948--4955.
[6] Wirth C, Comte V, Lagneau C, et al. Materials Science and Engineering, 2005, 25 (1): 51--60.
[7] Lincks J, Boyan B D, Blanchard C R, et al. Biomaterials, 1998, 19 (23): 2219--2232.
[8] Deligianni Despina D, Katsala Nikoleta D, Koutsoukos Petros G, et al. Biomaterials, 2001, 22 (1): 87--96.
[9] 司徒振强. 细胞培养, 第1版. 西安: 世界图书出版公司, 1992. 209--210.
[10] Hatano K, Inoue H, Kojo T, et al. Bone, 1999, 25 (4): 439--445.
[11] Deligianni D D, Katsala N, Ladas S, et al. Biomaterials, 2001, 22 (11): 1241--1251.
[12] Lange R, Lüthen F, Beck U, et al. Biomolecular Engineering, 2002, 19 (2--6): 255--261.
[13] Goransson A, Janssonb E, Tengvallb P, et al. Biomaterials, 2003, 24 (2): 197--205.
[14] Laczka-Osyczka A, Lacaka M, Kasugai S. Journal of Biomedical Materials Research, 1998, 42: 433--442.
[15] Ben-Ze’ev. Current Opinion in Cell Biology, 1997, 9 (1): 99--108.
[16] Ponsonnet L, Comte V, Othmane A, et al. Materials Science and Engineering C, 2002, 21: 157--165.
文章导航

/