研究论文

低温湿化学还原法制备Bi2Te3单晶纳米棒

  • 刘松秀 ,
  • 刘红梅 ,
  • 黄开勋
展开
  • 华中科技大学 化学与化工系, 武汉 430074

收稿日期: 2007-04-30

  修回日期: 2007-06-14

  网络出版日期: 2008-03-20

Preparation of Single Crystalline Bi2Te3 Nanorods through Chemical Reduction at Low Temperature

  • LIU Song-Xiu ,
  • LIU Hong-Mei ,
  • HUANG Kai-Xun
Expand
  • Department of Chemistry, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 2007-04-30

  Revised date: 2007-06-14

  Online published: 2008-03-20

摘要

采用低温湿化学还原法, 以Bi(NO3)3·5H2O和TeO2为原料, 通过乙二胺四乙酸(EDTA)参与调节使反应体系为中性, 以NaBH4为还原剂, 以表面活性剂Brij56(HO(CH2CH2O)10C16H33)为晶体生长调控剂, 制备了Bi2Te3纳米棒. 通过X射线衍射(XRD)、X射线荧光探针(XRF)、扫描电镜(SEM)、透射电镜(TEM)和高分辨透射电镜(HRTEM)对样品的组成和结构进行了分析, 同时初步探讨了Bi2Te3纳米棒的生长机理. 结果表明, 制备的Bi2Te3纳米棒直径在30nm左右, 长度在400nm左右, 具有单晶结构; 反应温度和Brij56的浓度对晶体形貌有较大的影响.

本文引用格式

刘松秀 , 刘红梅 , 黄开勋 . 低温湿化学还原法制备Bi2Te3单晶纳米棒[J]. 无机材料学报, 2008 , 23(2) : 305 -308 . DOI: 10.3724/SP.J.1077.2008.00305

Abstract

Bi2Te3 nanorods were successfully prepared through chemical reduction at low temperature. In this process, Bi(NO3)3·5H2O and TeO2 were used as reactants, NaBH4 was used as reductant, and Brij56 (HO(CH2CH2O)10C16H33) was used as regulator of crystal growth. EDTA was added into the solution to prevent the hydrolyzation of reactants at about pH 7.0. As-synthesized sample was characterized by X-ray diffraction and X-ray fluorescence, scanning electron microscope, transmission electron microscope, and high-resolution transmission electron microscope. Results show that Bi2Te3 nanorods are single crystalline, 30nm in diameter and 400nm in length. The temperature and the concentration of the surfactant Brij56 have obvious effects on the morphologies and sizes of synthesized sample. The growth mechanism of Bi2Te3 nanorods is also discussed.

参考文献

[1] Disalvo F J. Science, 1999, 285 (5428): 703--706.
[2] Hicks L D, Harman T C, Dresselhaus M S, et al. Phys. Rev. B, 1996, 53 (15-16): 10493--10496.
[3] Venkatasubramanian R, Siivola E, Colpitts T, et al. Nature, 2001, 413 (6856): 597--602.
[4] Macia E. Appl. Phys. Lett., 2000, 77 (19): 3045--3047.
[5] Sander M S, Prieto A L, Gronsky R, et al. Adv. Mater., 2002, 14 (9): 665--667.
[6] 王 为, 贾法龙, 黄庆华(WANG Wei, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19 (3): 517--522.
[7] 王 为, 张伟玲, 王 惠(WANG Wei, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19 (1): 127--132.
[8] Deng Y, Zhou X S, Wei G D, et al. J. Phys. Chem. Solid, 2002, 63 (11): 2119--2121.
[9] Deng Y, Nan C W, Wei G D, et al. Chem. Phys. Lett., 2003, 374 (3-4): 410--415.
[10] Yu S H, Yang J, Qian Y T, et al. J. Mater. Chem., 1998, 8 (9): 1949--1951.
[11] Zhao X B, Ji X H, Zhang Y H. Appl. Phys. A-Mater., 2005, 80 (7): 1567--1571.
[12] Zhao X B, Ji X H, Zhang Y H, et al. J. Alloy Compd., 2004, 368 (1-2): 349--352.
[13] Sun T, Zhao X B, Zhu T J, et al. Mater. Lett., 2006, 60 (20): 2534--2537.
[14] 孙 霆, 朱铁军, 赵新兵. 化学学报, 2005, 63 (16): 1515--1519.
[15] Zhou B, Zhao Y, Lin P, et al. Mater. Chem. Phys., 2006, 96 (2-3): 192--196.
[16] 张艳华, 赵新兵, 吉晓华. 中国稀土学报, 2004, 22 (1): 104--107.
文章导航

/