研究论文

Al与cBN在高温高压下的相互作用

  • 赵玉成 ,
  • 王明智
展开
  • 亚稳材料制备技术与科学国家重点实验室, 燕山大学材料科学与工程学院, 秦皇岛 066004

收稿日期: 2007-04-12

  修回日期: 2007-05-27

  网络出版日期: 2008-03-20

Interaction of Al and cBN under High Temperature and High Pressure

  • ZHAO Yu-Cheng ,
  • WANG Ming-Zhi
Expand
  • State Key Laboratory of Metastable Materials Science and Technology,
    College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China

Received date: 2007-04-12

  Revised date: 2007-05-27

  Online published: 2008-03-20

摘要

将立方氮化硼(cBN)微粉和铝(Al)微粉按照体积比7:3的比例进行混配, 在高温(1300~1500℃)、高压(5.5GPa)条件下进行烧结. 利用X射线衍射分析(XRD)、透射电子显微镜(TEM)以及X射线色散能谱(EDS)对烧结体的物相构成、显微结构以及各组分元素的分布进行了分析. 实验结果表明, 1300℃, Al尚未与cBN反应; 当温度升至1400℃时, Al与cBN反应生成AlN和AlB2; 温度进一步升高至1500℃, 反应产物增多, 产物种类不变. TEM和EDS分析表明, 在反应过程中Al扩散进入cBN的表层, B扩散进入富Al的区域, 生成新相AlN和AlB2.

本文引用格式

赵玉成 , 王明智 . Al与cBN在高温高压下的相互作用[J]. 无机材料学报, 2008 , 23(2) : 253 -256 . DOI: 10.3724/SP.J.1077.2008.00253

Abstract

Polycrystalline cubic boron nitride (PcBN) samples were obtained by sintering cBN and aluminum micro-powders in volume ratio of 7:3 at high temperature (1300--1500℃) and high pressure (5.5GPa). The identification and the morphology of phases, and the distribution of elements in PcBN samples were studied by using X-ray diffraction (XRD), transmission electron microscope (TEM), selected-area electron diffraction (SAED), and energy dispersive X-ray spectrometry (EDS). Results show that Al does not react with cBN at 1300℃. When the temperature is increased to 1400℃, Al can react with cBN to form AlN and AlB2, and the temperature is increased to 1500℃, the amount of products increases. TEM and EDS analyzing results indicate that Al atoms diffuse into surface layer of cBN particle, and B atoms diffuse into Al zone, forming new phases AlN and AlB2.

参考文献

[1] Kopac J, Krajnik P. Journal of Materials Processing Technology, 2006, 175 (1-3): 278--284.
[2] Kato Hideharu, Shintani Kazuhiro, Sumiya Hitoshi. Journal of Materials Processing Technology, 2002, 127 (2): 217--221.
[3] Liu X L, Wen D H, Li Z J, et al. Journal of Materials Processing Technology, 2002, 129 (1-3): 200--206.
[4] Neo K S, Rahman M, Li X P, et al. Journal of Materials Processing Technology, 2003, 140 (1-3): 326--331.
[5] Casanova C A M, Balzaretti N M, Voronin G, et al. Diamond and Related Materials, 1999, 8 (8-9): 1451--1454.
[6] Benko Ewa, Stanislaw Jan Skrzypek, Krolicka Bogna, et al. Diamond and Related Materials, 1999, 8 (10): 1838--1846.
[7] Klimczyk P, Benko E, Lawniczak-Jablonska K, et al. Journal of Alloys and Compounds, 2004, 382 (1-2): 195--205.
[8] Rong X Z, Tsurumi Takaaki, Fukunaga Osamu, et al. Diamond and Related Materials, 2002, 11 (2): 280--286.
[9] Benko E, Klimczyk P, Morgiel J, et al. Materials Chemistry and Physics, 2003, 81 (2-3): 336--340.
[10] Faran Eilon, Gotman Irena, Gutmanas Elazar Y. Materials Science and Engineering A, 2000, 288 (1): 66--74.
[11] Benko E. In Proc. World Ceramic Congress. ed. P. Vincenzini. Techna, Firenze, 1995. 1430--1434.
[12] Du Y J, Li S Y, Zhang K, et al. Scripta Materialia, 1997, 36 (1): 7--14.
文章导航

/