研究论文

炭纤维针刺预制体增强C/SiC复合材料的制备与性能研究

  • 闫联生 ,
  • 崔红 ,
  • 李克智 ,
  • 李贺军 ,
  • 王涛 ,
  • 宋麦丽
展开
  • 1. 西北工业大学材料学院, 西安 710072; 2. 西安航天复合材料研究所, 西安 710025

收稿日期: 2007-03-14

  修回日期: 2007-06-02

  网络出版日期: 2008-03-20

Preparation and Properties of Carbon Fiber Needling Preform Reinforced Silicon Carbide Composites

  • YAN Lian-Sheng ,
  • CUI Hong ,
  • LI Ke-Zhi ,
  • LI He-Jun ,
  • WANG Tao ,
  • Song Mai-Li
Expand
  • 1. Material Department, Northwestern Polytechnical University,
    Xi’an 710072, China; 2. Xi’an Aerospace Composite Material Institute, Xi’an 710025, China

Received date: 2007-03-14

  Revised date: 2007-06-02

  Online published: 2008-03-20

摘要

以炭纤维复合网胎针刺织物为预制体, 采用“化学气相渗透法+先驱体浸渍裂解法”(CVI+PIP)混合工艺, 制备了C/SiC陶瓷复合材料; 研究了针刺预制体的致密化效率以及复合材料的微观结构和力学性能, 并与目前常用的三维编织C/SiC复合材料和预氧丝针刺织物增强C/SiC复合材料进行了对比. 结果表明, 针刺预制体的致密化效率明显高于三维编织预制体, 在相同致密工艺条件下, 炭纤维针刺织物增强复合材料和预氧丝针刺织物增强复合材料的密度分
别达到2.08和2.02g/cm3, 而三维编织预制体增强复合材料的密度仅为1.81g/cm3. 炭纤维针刺复合材料的力学性能高于预氧丝针刺复合材料, 弯曲强度和剪切强度分别达到237和26MPa.

本文引用格式

闫联生 , 崔红 , 李克智 , 李贺军 , 王涛 , 宋麦丽 . 炭纤维针刺预制体增强C/SiC复合材料的制备与性能研究[J]. 无机材料学报, 2008 , 23(2) : 223 -228 . DOI: 10.3724/SP.J.1077.2008.00223

Abstract

Carbon fiber needling preform
reinforced C/SiC composites were prepared by “CVI+PIP”combined process.
The densification efficiency, the microstructure and properties of the C/SiC
composites reinforced by carbon fiber needling preform were investigated
compared with 3D woven preform and pre-oxidation PAN fiber needling preform reinforced C/SiC composites. The results show that the densification
efficiency of carbon fiber needling preform is higher than that of 3D
woven preform. Under the same densification processing condition, the densitis of the composites reinforced with carbon fiber needling preform and pre-oxidation PAN fiber needling preform reach 2.08g/cm3 and 2.02g/cm3, respectively, while the density of the composites reinforced with 3D woven preform is merely 1.81g/cm3. The composites reinforced with carbon fiber needling perform exhibits good mechanical properties with flexural strength of 237MPa and shear strength of 26MPa, respectively.

参考文献

[1] Naslain R. High Temperature Ceramic Matrix Composite, London: Woodhead Publications, 1993. 735--778.
[2] Nannetti C A, Riccardi B, Ortona A. Journal of Nuclear Materials, 2002, 307-311 (2): 1196--1199.
[3] 张立同, 成来飞, 徐永东. 航空制造技术, 2003, (1): 24--32.
[4] 闫联生, 邹武. 固体火箭技术, 1998, 21 (1): 54--58.
[5] Zheng G B, Sano H, Uchiyama Y, et al. J. Mater. Sci., 1999, 34 (4): 827--834.
[6] 闫联生, 王涛, 邹武, 等. 宇航材
料工艺, 1999, 29 (3): 38--41.
[7] Lackey J, Hanigofsky J A, Freeman G B, et al. J. Am. Ceram. Soc., 1995, 78 (6): 1564--1570.
[8] Inghels E, Lamon J. J. Mater. Sci., 1991, 26 (11): 5403--5410.
[9] Kaya H. Journal of Composite Science & Technology, 1999, 59 (3): 861--872.
[10] Trabandt U, Wulz H G, Schmid T. Journal of Key Engineering Materials, 1999, 164-165 (2): 445--450.
[11] Loumagne F, Langlais F, Naslain R, et al. Thin Solid Films, 1995, 254 (1): 75--82.
[12] 尹洪峰, 徐永东, 成来飞, 等(YIN Hong-Feng, et al). 硅酸盐学报(Journal of The Chinese Ceramic Society), 2000, 28 (5): 437--440.
文章导航

/