研究论文

Zn(Ga,Fe)2O4固溶体尖晶石结构中阳离子分布研究

  • 王静 ,
  • 邓彤 ,
  • 杨彩琴 ,
  • 王伟
展开
  • (1. 河北医科大学药学院, 石家庄 050071; 2. 中国科学院过程工程研究所, 北京 100081)

收稿日期: 2007-01-09

  修回日期: 2007-04-02

  网络出版日期: 2008-01-20

Cation Distribution in Zn(Ga,Fe)2O4 Solid Solutions with Spinel Structure

  • WANG Jing ,
  • DENT Tong ,
  • YANG Cai-Qin ,
  • WANG Wei
Expand
  • (1. School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China; 2. Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, China)

Received date: 2007-01-09

  Revised date: 2007-04-02

  Online published: 2008-01-20

摘要

应用X射线衍射密度法Zn(Ga,Fe)2O4(R因子法)计算了Zn(Ga,Fe)2O4固溶体尖晶石结构中阳离子分布, 结果表明: 金属离子在ZnGa2O4尖晶石结构中采取中间偏反型分布. 随Fe3+离子进入尖晶石结构, 促使Zn2+进入A位的量增多, 而Ga3+进入B位的量增多. 同时, 各样品的IR光谱表明: Fe 3+进入尖晶石结构取代Ga 3+对代表电子传导活化能的极限频率影响很大.

本文引用格式

王静 , 邓彤 , 杨彩琴 , 王伟 . Zn(Ga,Fe)2O4固溶体尖晶石结构中阳离子分布研究[J]. 无机材料学报, 2008 , 23(1) : 190 -194 . DOI: 10.3724/SP.J.1077.2008.00190

Abstract

The cation distribution in Zn(Ga,Fe)2O4 solid solutions with spinel structure were calculated by using the X-ray powder diffraction density method (R factor Method). The results indicate that the cations show osculant but lean to inverse distribution in Zn(Ga,Fe)2O4. With Fe3+ introduction into the spinel structure of Zn(Ga,Fe)2O4, the Zn2+ concentration in A sites and Ga3+ concentration in B sites increase. Meanwhile, the IR spectra of samples indicate threshold frequency representing the activation energy for electron conduction is affected sharply by the substitution of Fe3+ for Ga3+.

参考文献

[1] Malavasi L, Ghigna P, Chiodelli G, et al. J. Solid State Chem., 2002, 166 (1): 171--176.
[2] Okonska-Kozlowska I, Malicka E, Waskowska A, et al. J. Solid State Chem., 2001, 158 (1): 34--39.
[3] French V, Feast M, Partridge L, et al J. Phys. Chem. Solids, 1998, 59 (8): 1259--1269.
[4] Monge M A, Gutierrez-Puebla E, Martinez J L, et al. Chem. Mater., 2000, 12 (7): 2001--2007.
[5] Juan M, Gonzalez R, Arean C O, et al. J. Chem. Soc. Dalton Trans., 1985, 10: 2155--2159.
[6] O’Neill H S C, Navrotsky A. Am. Miner., 1984, 69: 733--753.
[7] Carter D C, Mason T O. J. Am. Ceram. Soc., 1988, 71 (4): 213--218.
[8] Dunitz J D, Orgel L E. J. Phys. Chem. Solids, 1957, 3: 318--323.
[9] O’Neill H S C, Navrotsky A. Am. Miner., 1983, 68 (1--2): 181--194.
[10] Yoo H I, Tuller H L. J. Am. Ceram. Soc., 1987, 70 (6): 388--392.
[11] Mahmoud M H. Solid State Ionics, 2005, 176 (13--14): 1333--1336.
[12] Ataouia K E, Doumercb J P, Ammara A, et al. Journal of Alloys and Compounds, 2004, 368 (1--2): 79--83.
[13] Kamiyama T, Haneda K, Sato T, et al. Solid State Communication, 1992, 81 (7): 563--566.
[14] Wang J, Deng T, Dai Y J. Journal of Alloys and Compounds, 2006, 419 (1--2): 155--161.
[15] 王静, 邓彤, 杨欢, 等(WANG Jing, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (5): 1059--1065.
[16] Wei Q M, Li J B, Chen Y J. Materials Characterization, 2001, 47 (3--4): 247--252.
[17] Furuhshi H, Inagki M, Naka S, et al. J. Inorg. Nicl. Chem., 1973, 35: 3009--3014.
[18] Kawade V B, Bichile G K, Jadhav K M. Materials Letters, 2000, 42 (1--2): 33--37.
[19] Ladgaonkar B P, Vaingankar A S. Materials Chemistry and Physics, 1998, 56 (3): 280--283.
[20] Wiles D B, Young R A. J. Appl. Cryst., 1981, 14 (2): 149--151.
[21] Rietveld H M. J. Appl. Cryst., 1969, 2 (2): 65--71.
[22] Gonzalez-Sandoval M P, Beesley A M, Miki-Yoshida M, et al. Journal of
Alloys and Compounds, 2004, 369 (1--2): 190--194.
[23] Popovic S. J. Appl. Cryst., 1973, 6 (2): 122--128.
[24] Hugh S T, O’Neill C, Navrotsky A. Am. Mineral, 1983, 68 (1--2): 181--194.
[25] Sattar A A. Journal of Materials Science, 2004, 39 (2): 451--455.
[26] Porta P, Stone F S, Tuner R G, et al. J. Solid State Chem., 1974, 11 (2): 135--147.
[27] Preudhomme J, Tarte P. Spectrochim. Acta. A, 1971, 27 (7): 961--968.
[28] Kumara V R, Narasimhulua K V, Gopala N O, et al. Journal of Physics and Chemistry of Solids, 2004, 65 (7): 1367--1372.
文章导航

/