研究论文

AlN陶瓷的高压烧结研究

  • 李小雷 ,
  • 马红安 ,
  • 左桂鸿 ,
  • 郑友进 ,
  • 李吉刚 ,
  • 贾晓鹏
展开
  • (1. 吉林大学 超硬材料国家重点实验室, 长春 130012; 2. 河南理工大学, 焦作 454000; 3. 牡丹江师范学院, 牡丹江 157012)

收稿日期: 2007-02-03

  修回日期: 2007-04-03

  网络出版日期: 2008-01-20

High Pressure Sintering of AlN Ceramics

  • LI Xiao-Lei ,
  • MA Hong-An ,
  • ZUO Gui-Hong ,
  • ZHENG You-Jin ,
  • LI Ji-Gan ,
  • JIA Xiao-Peng
Expand
  • (1. National Lab of Superhard Materials, Jilin University, Changchun 130012, China; 2. Henan Polytechnic University, Jiaozuo 454000, China; 3. Mudanjiang Teachers College, Mudanjiang 157012, China)

Received date: 2007-02-03

  Revised date: 2007-04-03

  Online published: 2008-01-20

摘要

以自蔓延高温合成的AlN粉体为原料, 用六面顶压机在高压(3.1~5.0GPa)下实现了未添加烧结助剂的AlN陶瓷体的烧结. 研究了烧结工艺参数对AlN烧结性能的影响. 用XRD、SEM对AlN高压烧结体进行了表征. 研究表明: 高压烧结能够有效降低AlN陶瓷的烧结温度并缩短烧结时间, 烧结体的结构致密. 在5.0GPa/1300℃条件下高压烧结50min的AlN陶瓷的相对密度达94.9%. 在5.0GPa/1700℃/125min条件下制备的AlN陶瓷晶格常数比其粉体减小了约0.09%.

本文引用格式

李小雷 , 马红安 , 左桂鸿 , 郑友进 , 李吉刚 , 贾晓鹏 . AlN陶瓷的高压烧结研究[J]. 无机材料学报, 2008 , 23(1) : 104 -108 . DOI: 10.3724/SP.J.1077.2008.00104

Abstract

High-density aluminum nitride ceramics were fabricated without sintering additives under high pressure (3.1-5.0GPa) and different temperature (1300-1800℃) in China-type cubic anvil high-pressure and high-temperature apparatus, using AlN powder produced by SHS method as starting material. The effects of sintering conditions, i.e. time, temperature and pressure, on sintering characteristics of AlN ceramics were studied. The sintered bodies were characterized by XRD and SEM. The results show that high pressure sintering can lower the sintering temperature and shorten the sintering time. The microstructure of the sintered bodies is homogeneous. The relative density of AlN ceramics sintered at 5.0GPa and 1300℃ for 50min is 94.92%. The lattice parameters of the specimens sintered at 5.0GPa and 1700℃ for 125min are decreased by about 0.09% than that of the AlN powder.

参考文献

[1] Sheppard L M. Am. Ceram. Soc. Bull., 1990, 69 (11): 1801-1812.
[2] 金海云, 王雯, 高积强, 等(JING Hai-Yun, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (1): 176-180.
[3] Slack G A, Tanzilli R A, Pohl R O, et al. J. Phys. Chem. Solids, 1987, 48 (7): 641-647.
[4] 秦明礼, 曲选辉, 段柏华, 等(QING Ming-Li, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (1): 245-250.
[5] Virkar A V, Jackson T B, Cutler R A. J. Am. Ceram. Soc., 1989, 72 (11): 2031-2042.
[6] Jackson T B, Virkar A V, More K L, et al. J. Am. Ceram. Soc., 1997, 80 (6): 1421-1435.
[7] Watari K, Valecillos M C, Brito S, et al. J. Am. Ceram. Soc., 1996, 79 (12): 3103-3108.
[8] Shoichi K, Masaki Y, Naoki O, et al. Ceram. Int., 2007, 33 (2): 269-272.
[9] Qiao L, Zhou H, Xue H, et al. J. Eur. Ceram. Soc., 2003, 23 (9): 61-67.
[10] Hirano M, Kato K, Isobe T, et al. J. Mater. Res., 1993, 28 (17): 4725-4730.
[11] Lu Z Y, Teng Y C, Liao Q L, et al. J. Mater. Sci-Mater. Electron., 2005, 16 (8): 483-487.
[12] Ma H A, Jia X P, Chen L X, et al. J. Phys.: Condens. Matter, 2002, 14 (44): 11181-11184.
[13] 崔国文. 缺陷、扩散与烧结. 北京: 清华大学出版社, 1990. 175-182.
[14] Gorczyca I, Christensen N E, Perlin P, et al. Solid State Comun., 1991, 79 (12): 1033-1034.
[15] Ueno M, Onodera A, Shimomura O, et al. Phys. Rev. B, 1992, 45 (17): 10123-10126.
[16] Kim Y W, Park H C, Lee Y B, et al. J. Eur. Ceram. Soc., 2001, 21 (13): 2383-2391.
文章导航

/