研究论文

以汞为反应介质制备氧化锌纳米空心球

  • 杨琪 ,
  • 刘磊 ,
  • 沈彬 ,
  • 邓意达 ,
  • 胡文彬
展开
  • 上海交通大学金属基复合材料国家重点实验室, 上海 200030

收稿日期: 2007-02-04

  修回日期: 2007-04-24

  网络出版日期: 2008-01-20

Preparation of Zinc Oxide Nano-hollow Spheres in Mercury Medium

  • YANG Qi ,
  • LIU Lei ,
  • SHEN Bin ,
  • DENG Yi-Da ,
  • HU Wen-Bin
Expand
  • State Key Laboratory of Metal Matrix Composites, Shanghai Jiaotong University, Shanghai 200030, China

Received date: 2007-02-04

  Revised date: 2007-04-24

  Online published: 2008-01-20

摘要

以汞为反应介质, 表面活性剂胶束为模板, 通过锌的氧化反应制备了氧化锌空心球. 采用SEM、EDX、TG、DTA、XRD、IR等测试手段对产物的形貌和结构进行了表征, 并考察了表面活性剂对产物生长的影响. 研究表明, 氧化锌空心球为无定型结构, 壁厚为纳米尺度, 由氧化锌纳米粒子组装而成, 煅烧后转变为六方纤锌矿结构. 加入适量PEG或CTAB, 能制备出氧化锌空心球; 不加入表面活性剂、加入过量PEG或SDBS, 则不能制备出氧化锌空心球.

本文引用格式

杨琪 , 刘磊 , 沈彬 , 邓意达 , 胡文彬 . 以汞为反应介质制备氧化锌纳米空心球[J]. 无机材料学报, 2008 , 23(1) : 39 -42 . DOI: 10.3724/SP.J.1077.2008.00039

Abstract

Zinc oxide nano-hollow spheres were prepared by oxidation of zinc in mercury medium with template of surfactant micelles. SEM, EDX, TG, DTA, XRD and IR were used to characterize the as-grown products. The effect of surfactant on the growth of zinc oxide was discussed. The results show that zinc oxide hollow spheres, amorphous, with nanometer-sized thickness are assembled by zinc oxide nanometer particles. After calcinated, they transform to wurtzite structure. With suitable concentration of PEG or CTAB adding, ZnO hollow spheres can be fabricated on the surface of Zn plate. If no surfactant, excessive concentration of PEG or SDBS is added, ZnO hollow spheres can’t be fabricated.

参考文献

[1] Caruso F. Adv. Mater., 2001, 13 (1): 11--22.
[2] Kim S W, Kim M, Lee W Y, et al. Am. Chem. Soc., 2002, 124 (26): 7642--7643.
[3] Huang J X, Xie Y, Li B, et al. Adv. Mater., 2000, 12 (11): 808--811.
[4] Yin J L, Qian X F, Yin J, et al. Inorg. Chem. Comm., 2003, 6 (7): 942--945.
[5] Zhong Z Y, Yin Y D, Gates B, et al. Adv. Mater., 2000, 12 (3): 206--209.
[6] Kawahashi N, Shiho H. J. Mater. Chem., 2000, 10 (10): 2294--2297.
[7] Shiho H, Kawahashi N. J. Colloid Interf. Sci., 2000, 226 (1): 91--97.
[8] Cao H, Zhao Y G, Ong H C. Appl. Phys. Lett., 1998, 73 (25): 3656--3658. [9] Tao D L, Qian W Z, Huang Y, et al. J. Cryst. Growth, 2004, 271 (3): 353--357.
[10] Kong X H, Sun X M, Li X L, et al. Mater. Chem. Phys., 2003, 82 (3): 997-1001.
[11] Hu J Q, Li Q, Meng X M, et al. Chem. Mater., 2003, 15 (1): 305--308.
[12] Wang Z, Qian X F, Yin J, et al. J. Solid State Chem., 2004, 177 (6): 2144-2149.
[13] Dai Y, Zhang Y, Li Q K, et al. Chem. Phys. Lett., 2002, 358 (1-2): 83--86.
[14] Li Z Q, Xie Y, Xiong Y J, et al. New J. Chem., 2003, 27 (10): 1518--1521.
[15] Davies C H J. Script Materialia, 1997, 36 (1): 35--40.
[16] Davies C H J, Hong L. Script Materialia, 1999, 40 (10): 1145--1152.
[17] Khoudiakov M, Ellis A B, Kepler K D. J. Alloy. Compd., 2002, 338 (1-2): 32--35.
[18] Kong L D, Liu S, Yan X W, et al. Micropor. Mesopor. Mat., 2005, 81 (1-3): 251--257.
文章导航

/