研究论文

以油菜花粉为模板水热法制备TiO2中空微球

  • 李平 ,
  • 曾昌凤 ,
  • 张利雄 ,
  • 徐南平
展开
  • 1. 南京工业大学化学化工学院, 省部共建材料化学工程教育部重点实验室, 南京 210009; 2. 南京工业大学机械与动力工程学院, 南京 210009

收稿日期: 2007-01-19

  修回日期: 2007-03-14

  网络出版日期: 2008-01-20

Hydrothermal Synthesis of TiO2 Hollow Spheres Using Rapeseed Pollen Grains as Template

  • LI Ping ,
  • ZENG Chang-Feng ,
  • ZHANG Li-Xiong ,
  • XU Nan-Ping
Expand
  • 1. College of Chemistry and Chemical Engineering, Key Laboratory of Materials-oriented Chemical Engineering of Ministry-Province, Ministry of Education, Nanjing University of Technology, Nanjing 210009, China; 2. College of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210009, China

Received date: 2007-01-19

  Revised date: 2007-03-14

  Online published: 2008-01-20

摘要

以油菜花粉为模板, 先用超声使花粉分散在无水乙醇中, 再通过水热法制备了TiO2前驱体/花粉壳-核微球; 550℃焙烧脱除花粉核后得到了TiO2中空微球. 采用SEM, TG, XRD, FTIR和N2吸附对TiO2前驱体/花粉壳-核微球及TiO2中空微球进行了表征. 结果表明: 在TiO2前驱体/花粉壳-核微球的制备过程中, 超声波诱导能使TiO2前驱体较均匀的负载在花粉表面, 适宜的钛酸丁酯用量为6.6g/g花粉, 适宜的水热处理温度为105℃. 在此条件下得到的TiO2前驱体/花粉壳-核微球经550℃焙烧即可制得形状完整、大小约18μm的锐钛矿型TiO2中空微球. 具有较窄的中孔结构, 平均孔半径为1.9nm, 比表面积为26.76m2·g-1.

关键词: 花粉; 水热法; TiO2; 中空微球

本文引用格式

李平 , 曾昌凤 , 张利雄 , 徐南平 . 以油菜花粉为模板水热法制备TiO2中空微球[J]. 无机材料学报, 2008 , 23(1) : 49 -54 . DOI: 10.3724/SP.J.1077.2008.00049

Abstract

TiO2 precursor/pollen grain core-shell composite materials were prepared by hydrothermal synthesis under ultrasound irradiation by using rapeseed pollen grains as template. The core of the pollen grain could be removed by calcination at 550℃ for 6h and the TiO2 hollow spheres were consequently obtained. SEM, TG, XRD, FTIR and N2 adsorption were used to characterize the TiO2/pollen grain core-shell composites and the hollow titania spheres. The results indicate that the ultrasound irradiation helps the dispersion of TiO2 precursor on the pollen grains’ surface uniformly and the suitable amount of tetrabutyl titanate is 6.6g/g pollen, the proper temperature for the hydrothermal synthesis is 105℃. The final TiO2 hollow spheres with pure anatase phase, have narrow mesopore-size distribution, with an average pore radius of 1.9nm and BET surface area of 26.76m2·g-1.

参考文献

[1] Yang H G, Zeng H C. J. Phys. Chem. B, 2004, 108 (11): 3492--3495.
[2] Li Y Z, Toyoki K, Shigenori F. J. Phys. Chem. B, 2006, 110 (26): 13000--13004.
[3] Li J, Zeng H C. Angew. Chem. Int. Ed., 2005, 44 (28): 4342--4345.
[4] Nakamura H, Ishii M, Tsukigase A, et al. Langmuir., 2005, 21 (19): 8918--8922.
[5] Kim K D, Kimb H T. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2005, 255 (1--3): 131--137.
[6] Collins A M, Spickermann C, Mann S. J. Mater. Chem., 2003, 13 (5): 1112--1114.
[7] Li W J, Coppens M O. Chem. Mater., 2005, 17 (9): 2241--2246.
[8] Fujikawa S, Kunitake T. Langmuir., 2003, 19 (16): 6545--6552.
[9] Wang L Z, Sasaki T. Chem. Mater., 2002, 14 (11): 4827--4832.
[10] Yin J L, Chen H J, Li Z K, et al. J. Mater. Sci., 2003, 38 (24): 4911--4916.
[11] Hall S R, Bolger H, Mann S. Chem. Commun., 2003, (22): 2784--2785.
[12] Hall S R, Swinerd V M, Newby F N, et al. Chem. Mater., 2006, 18 (3): 598--600.
[13] Wang Y, Liu Z M, Han B X, et al. Langmuir, 2005, 21 (23): 10846--10849.
[14] Zhang Y X, Li G, Wu Y C, et al. J. Phys. Chem. B, 2005, 109 (21): 5478--5481.
[15] 张峰, 张歆(ZHANG Feng, et al). 无机材料学报, (Journal of Inorganic Materials), 2006, 21 (5): 1268--1272.
[16] Guo C W, Cao Y, Xie S H, et al. Chem. Commun., 2003, (6): 700--701.
[17] Shchukin D G, Caruso R A. Chem. Mater., 2004, 16 (11): 2287--2292.
[18] Strohm H, Lb\ddotomann P. J. Mater. Chem., 2004, 14 (17): 2667--2673.
文章导航

/