研究论文

氧分压对直流磁控溅射制备 ZnO:Ga透明导电薄膜特性的影响

  • 马全宝 ,
  • 叶志镇 ,
  • 何海平 ,
  • 朱丽萍 ,
  • 张银珠 ,
  • 赵炳辉
展开
  • (浙江大学 材料系硅材料国家重点实验室, 杭州 310027)

收稿日期: 2006-12-13

  修回日期: 2007-01-13

  网络出版日期: 2007-11-20

Effects of Oxygen Partial Pressure on the Properties of Transparent Conductive ZnO:Ga Films Prepared by DC Reactive Magnetron Sputtering

  • MA Quan-Bao ,
  • YE Zhi-Zhen ,
  • HE Hai-Ping ,
  • ZHU Li-Ping ,
  • ZHANG Yin-Zhu ,
  • ZHAO Bing-Hui
Expand
  • (State Key Laboratory of Silicon Materials, Department of materials, Zhejiang University, Hangzhou 310027, China)

Received date: 2006-12-13

  Revised date: 2007-01-13

  Online published: 2007-11-20

摘要

通过直流反应磁控溅射法在玻璃衬底上制备了掺镓ZnO(ZnO:Ga)透明导电薄膜, 研究了氧分压对ZnO:Ga透明导电薄膜结构和电光学性能的影响. X射线衍射结果表明所制备的薄膜具有c轴择优取向的六角多晶结构. ZnO:Ga透明导电薄膜的晶粒尺寸强烈依赖于氧分压的大小, 随着氧分压的增大薄膜的晶粒尺寸先增大后减小, 在氧分压为0.30 Pa时沉积的ZnO:Ga薄膜半高宽最小, 晶粒尺寸最大. 薄膜的电阻率随着氧分压的增大先减小后增大, 沉积薄膜的最低电阻率可达3.50×10-4Ω·cm. 此外, 所有ZnO:Ga薄膜在可见光范围内的平均透射率均超过90%.


本文引用格式

马全宝 , 叶志镇 , 何海平 , 朱丽萍 , 张银珠 , 赵炳辉 . 氧分压对直流磁控溅射制备 ZnO:Ga透明导电薄膜特性的影响[J]. 无机材料学报, 2007 , 22(6) : 1113 -1116 . DOI: 10.3724/SP.J.1077.2007.01113

Abstract

Ga-doped zinc oxide (ZnO:Ga) transparent conductive films were deposited on glass substrates by DC reactive magnetron sputtering. The influence of oxygen partial pressure on the structural, electrical and optical properties of ZnO:Ga films was investigated. The X-ray diffraction (XRD) studies show that the films are highly oriented with their crystallographic c-axis perpendicular to the substrate. The grain size of ZnO:Ga films is strongly dependent on the oxygen partial pressure. With the oxygen partial pressure increasing, the grain size of the films increases first, reaches a maximum at 0.30Pa and then decreases. As the oxygen partial pressure increases, the resistivity of ZnO:Ga films decreases gradually, reaches a minimum at 0.30Pa and then increases. The lowest resistivity of ZnO:Ga films obtained at the oxygen partial pressure of 0.30Pa is 3.50×10-4Ω·cm. The average transmittance of the ZnO:Ga thin films is over 90%.

参考文献

[1] Yamamoto Y, Saito K, Takahash Ki, et al. Solar Energy Mater. Sol. Cells, 2001, 65: 125--132.
[2] Wang W W, Diao X G, Wang Z, et al. Thin Solid Films, 2005, 491: 54--60.
[3] Hirata G A, McKittrick J, Cheeks T. Thin Solid Films, 1996, 288: 29--31.
[4] Ma Q B, Ye Z Z, He H P, et al. Mater. Lett., 2007, 61: 2460--2463.
[5] Lee C, Lim K, Song J. Sol. Energy Mater Sol. Cells, 1996, 43: 37--45.
[6] Ye Z Z, Tang J F. Appl. Opt., 1989, 28: 2817--2820.
[7] Maldonado A, Guerra S T, Lira M M, et al. Sol. Energy Mater. Sol. Cells, 2006, 90: 742--752.
[8] Assuncao V, Fortunato E, Marques A, et al. Thin solid films, 2003, 427: 401--405.
[9] Yu X, Ma J, Ji F, et al. J. Cryst. Growth, 2005, 274: 474--479.
[10] Ma Q B, Ye Z Z, He H P, et al. J. Cryst. Growth, 2007, 304: 64--68.
[11] Khranovskyy V, Grossner U, Lazorenko V, et al. Superlatt. Microstruct., 2006, 39: 275--281.
[12] Gomez H, Maldonado A, Olvera M L, et al. Sol. Energy Mater. Sol. Cells, 2005, 87: 107--116.
[13] Henley S J, Ashfold M N R, Cherns D. Surf. Coat Technol., 2004, 177--178: 271--276.
[14] 陈志强, 方国家, 李 春, 等(CHENG Zhi-Qiang, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (3): 707--712.
[15] Yamamoto T, Sakemi T, Awai K, et al. Thin Solid Films, 2004, 451--452: 439--442.
[16] Asmar R A, Juillaguet S, Ramonda M, et al. J. Cryst. Growth, 2005, 275: 512--520.
[17] Kim K H, Park K C, Ma D Y. J. Appl. Phys., 1997, 81: 7764--7772.
[18] Hong R J, Jiang X, Szyszka B, et al. Appl. Surf. Sci., 2003, 207: 341--350.
[19] Burstein E. Phys. Rev., 1954, 93: 632--633.
[20] Moss T S. Proc. Phys. Soc. London Ser. B, 1954, 67: 775--782.
[21] Lee H W, Lau S P, Wang Y G, et al. J. Cryst. Growth, 2004, 268: 596--601.
[22] Cao H T, Pei Z L, Gong J, et al. Surf. Coat. Technol., 2004, 184: 84--92.
[23] Chen M, Pei Z L, Wang X, et al. J. Vac. Sci. Technol. A, 2001, 19: 963--970.
文章导航

/