研究论文

纳米TiO2修饰 Ni-W-P电极的制备及其光电催化析氢性能

  • 张卫国 ,
  • 刘洋 ,
  • 王飙 ,
  • 李贺 ,
  • 姚素薇
展开
  • 天津大学化工学院杉山表面技术研究室, 天津 300072

收稿日期: 2006-08-07

  修回日期: 2006-09-29

  网络出版日期: 2007-07-20

Preparation of Nano-crystalline TiO2 Film Modified Ni-W-P Electrode and Its Photoelectrocatalytic Activity for Hydrogen Evolution Reaction

  • ZHANG Wei-Guo ,
  • LIU Yang ,
  • WANG Biao ,
  • LI He ,
  • YAO Su-Wei
Expand
  • SUGIYAMA Laboratory of Surface Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

Received date: 2006-08-07

  Revised date: 2006-09-29

  Online published: 2007-07-20

摘要

在Cu基体上电沉积Ni-W-P合金后, 通过溶胶-凝胶法制备了纳米TiO2修饰Ni-W-P合金电极. 利用扫描电子显微镜(SEM)、X射线衍射(XRD)、阴极极化曲线测试了TiO2/Ni-W-P电极的表面形貌、结构及催化析氢性能, 考察了烧结温度、TiO2膜层厚度对电极结构和性能的影响. 实验结果表明: 550℃下烧结1h、拉膜15次制备的TiO2/Ni-W-P电极光电催化析氢性能最佳, 500W碘钨灯照射下析氢过电位减小约140mV; 此时TiO2为锐态矿型和金红石型混晶结构, 平均晶粒尺寸约7nm.

本文引用格式

张卫国 , 刘洋 , 王飙 , 李贺 , 姚素薇 . 纳米TiO2修饰 Ni-W-P电极的制备及其光电催化析氢性能[J]. 无机材料学报, 2007 , 22(4) : 765 -768 . DOI: 10.3724/SP.J.1077.2007.00765

Abstract

After electrodeposion of Ni-W-P alloy on Cu sheet, nano-crystalline TiO2 film modified Ni-W-P electrode was prepared by a sol-gel method. Scanning electron microscope (SEM), X-ray diffraction (XRD) and cathodic polarization curves were used to characterize the surface morphology, microstructure and catalytic activity for hydrogen evolution reaction (HER) of TiO2/Ni-W-P electrodes. Effects of the sintering temperature and the thickness of TiO2 film on the structure and performance of TiO2/Ni-W-P electrodes were researched. The results clearly demonstrate that the TiO2/Ni-W-P electrode annealed at 550℃ for 1h has the best photoelectrocatalytic activity for HER, and the overpotential for HER decreases about 140mV under illumination. The TiO2 film with average grain size of 7nm is mixed crystal structure containing anatase and rutile crystal phases.

参考文献

[1] Fujishima A, Honda K. Nature, 1972, 37 (1): 238--245.
[2]上官文峰. 无机化学学报, 2001, 17 (5): 619--626.
[3] 梅长松, 钟顺和(Mei Chang-Song, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (6): 1396--1402.
[4] Shangguan W, Yoshida A. Inter J. Hydrogen Energy, 1999, 24: 425--429.
[5] Ogura S, Kohno M, Sato K. J. Mater. Chem., 1994, 8: 2335--2337.
[6] 关凯书, 尹衍升, 姜秋鹏(Guan Kai-Shu, et al). 硅酸盐学报(Journal of the Chinese Ceramic Society), 2003, 31 (3): 219--223.
[7] Fujishima A, Rao T N, Tryk D A. J. Photochem. Photobiol. C Photochem. Rev., 2000, 1: 1--21.
[8] 陈启元, 兰可, 高友良, 等. 材料导报, 2005, 19 (1): 20--23.
[9] 李爱昌, 姚素薇, 赵水林, 等. 表面技术, 1995, 24 (3): 8--10.
[10] 崔玉民. 稀有金属, 2006, 30 (1): 107--112.
[12] 朱永法, 李巍, 何俣, 等. 高等学校化学学报, 2003, 24 (3): 465--468.
[13] 张剑平, 孙召梅, 施利毅, 等 (Zhang Jian-Ping, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (5): 1243--1248.
[14] 范乐庆, 吴季怀, 黄昀防, 等. 太阳能学报, 2005, 26 (1): 34--38.
[15] Bowker M, James D, Stone P, et al. J Catal., 2003, 217: 427--433.
文章导航

/