研究论文

铂分布形式对TiO2薄膜光电化学行为的影响

  • 王彦明 ,
  • 李新军 ,
  • 郑少健
展开
  • 1. 中国科学院广州能源研究所, 广州 510640; 2. 中国科学院研究生院, 北京 100049

收稿日期: 2006-08-31

  修回日期: 2006-10-30

  网络出版日期: 2007-07-20

Effect of Pt Distribution in TiO2 Films on thePhotoelectrochemical Behaviors

  • WANG Yan-Ming ,
  • LI Xin-Jun ,
  • ZHENG Shao-Jian
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; 2. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

Received date: 2006-08-31

  Revised date: 2006-10-30

  Online published: 2007-07-20

摘要

采用Sol-Gel法通过交替浸渍提拉工艺制备了Pt以不同形式分布的TiO2薄膜(均匀分布, 底层分布). 采用三电极体系研究薄膜的光电化学行为, 并用制备的薄膜组装成染料敏化纳米晶太阳能电池(DSSC), 考察了DSSC的光电转换性能. 结果显示: Pt底层分布的TiO2薄膜在紫外光照射下, 三电极体系的光电流增强, 乙醇作为空穴捕获剂添加到电解质体系中光电流进一步增强, 且从线性伏安曲线可知, Pt底层分布的TiO2薄膜中有更多的自由空穴存在; 这些结果表明: Pt底层分布的TiO2薄膜光生载流子得到有效分离, 且光生空穴分布在表层;由于Pt底层分布的TiO2薄膜具有表层空穴富集的趋势, DSSC在光照下, 敏化剂产生的电子易于向Pt底层分布的TiO2薄膜转移, 表现在短路电流Isc和开路电压Voc的显著增大.

本文引用格式

王彦明 , 李新军 , 郑少健 . 铂分布形式对TiO2薄膜光电化学行为的影响[J]. 无机材料学报, 2007 , 22(4) : 729 -732 . DOI: 10.3724/SP.J.1077.2007.00729

Abstract

TiO2 films with Pt distributing in bottom layer(PT) or uniformly(PP) were prepared by a sol-gel method through alternate dip-coating process. The photoelectrochemical behaviors of the films were measured by a three-electrode system, and the dye-sensitized solar cells (DSSC) with these films as anodes were assembled to investigate the photoelectric conversion capacities. The results show that the photocurrent of PT film is higher than that of TT and more enlarged by ethanol addition into the electrolyte as the holes’ capture agent. The above phenomena can be explained based
on the separation of photogenerated carriers and photoholes’ accumulation in the surface layer. Due to photoholes’ accumulating in the surface, the excited electrons can transfer to TiO2 film more easily. The short-circuit Isc and the open-potential Voc are increased obviously.

参考文献

[1] Sopyan I, Watanabe M, Fujishima A, et al. J. Photochem. Photobiol. A, 1996, 98: 79--86.
[2] O’Regan B, Gr\ddot atzel M. Nature, 1991, 353: 737--740.
[3] 朱永法, 张利, 姚文清, 等. 催化学报, 1999, 20 (3): 362--364.
[4] Tsukasa T, Jocelyn P R, Kentaro L, et al. J. Am. Chem. Soc., 2003, 125: 316--317.
[5] Asahi R, Ohwaki T, Aoki k, et al. Science, 2001, 293: 269--271.
[6] Kyung H K, Young C L, Young J J, et al. J. Colloid Interface Sci., 2005, 283: 482--487.
[7] ZHAO G L, Hiromitsu K, LIN H, et al. Thin Solid Films, 1999, 340: 125--131.
[8] WANG H X, LI H, MENG Q B, et al. J. Am. Chem. Soc., 2005, 127: 6394--6401.
[9] DAI S Y, WANG K J, WENG J, et al. Sol. Ener. Material Sol. Cells, 2005, 85: 447--455.
[10] 王俊刚, 李新军, 郑少健, 等. 化学学报, 2005, 63 (7): 592--596.
[11] 戴松元. 物理, 1999, 28 (4): 231--235.
[12] Papageorgiou N, Maier W F, Gratzel M, et al. J. Electrochem. Soc., 1997, 144: 876--884.
[13] 刘鸿, 吴鸣, 吴合进, 等. 物理化学学报, 2001, 7 (3): 286--288
文章导航

/