研究论文

La0.67Ca0.33MnO3/MgO复合体系中的电输运和磁电阻效应

  • 任光明 ,
  • 袁松柳 ,
  • 缪菊红 ,
  • 余功奇 ,
  • 肖 循 ,
  • 尹诗岩
展开
  • 华中科技大学物理系, 武汉 430074

收稿日期: 2006-07-19

  修回日期: 2006-09-07

  网络出版日期: 2007-07-20

Electrical Transport and Magnetoresistance in La0.67Ca0.33MnO3/MgO Composites

  • REN Guang-Ming ,
  • YUAN Song-Liu ,
  • MIAO Ju-Hong ,
  • YU Gong-Qi ,
  • XIAO Xun ,
  • YIN Shi-Yan
Expand
  • Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 2006-07-19

  Revised date: 2006-09-07

  Online published: 2007-07-20

摘要

用化学方法制备了(1-x)La0.67Ca0.33MnO3(LCMO)/xMgO颗粒复合体系. 通过选择不同的前期预烧温度(Ts1)控制LCMO原粉的颗粒大小. 研究表明, MgO的含量和LCMO的前期预烧温度对复合体系的电输运和磁电阻效应有显著的影响. 对Ts1=1100℃的样品, 仅在纯LCMO和x=1mol%的复合样品中可以观察到绝缘体金属转变. 而对Ts1=900℃的样品, 在x=7mol%的复合样品中还可以观察到绝缘体金属转变, 其最大低场磁电阻(H=0.3T)从纯LCMO的5%增加到27%. SEM形貌分析表明MgO含量增加或LCMO前期预烧温度升高都使复合体系中LCMO颗粒之间的联结性减弱. 运用自旋极化隧穿机理, 对实验结果进行了讨论.

本文引用格式

任光明 , 袁松柳 , 缪菊红 , 余功奇 , 肖 循 , 尹诗岩 . La0.67Ca0.33MnO3/MgO复合体系中的电输运和磁电阻效应[J]. 无机材料学报, 2007 , 22(4) : 715 -719 . DOI: 10.3724/SP.J.1077.2007.00715

Abstract

A La0.67Ca0.33MnO3(LCMO)/MgO granular composite system was fabricated by a chemical route. The grain size of the parent LCMO powders can be altered by controlling the initial sintering temperature. It shows that electrical transport and magetoresistive properties of the composite system strongly depend on the MgO content and initial sintering temperatures. For the samples with Ts1=1100℃, the insulator-metal transition can be observed only in pure LCMO and the x=1mol% composite. However, For the samples with Ts1=900℃, the insulator-metal transition can still be observed in the x=7mol% composite in which the maximal low field magnetoresistance (H=0.3T) is enhanced from 5% in pure LCMO to 27%. SEM analysis shows that
linking between LCMO grains is weakened with increasing MgO content or elevating the initial sintering temperature. The experimental results were discussed in terms of the spin polarized tunneling mechanism.

参考文献

[1] 王克峰, 刘俊明. 物理学进展, 2003, 23 (2): 192--211.
[2] Jin S, et al. Science, 1994, 264: 413--415.
[3] 刘耀诚, 郭永权, 周和平, 等(LIU Yao-cheng, et al). 无机材料学报(Journal of Inorganic Materials), 1999, 14 (3): 475--478.
[4] Hwang H Y, et al. Phys. Rev. Lett., 1996, 77: 2041--2044.
[5] Yuan Song-Liu, Xia Zheng-Cai, et al. Chin. Phys. Lett., 2002, 19(8): 1168--1171.
[6] 袁松柳, 方重华, 缪菊红, 等(YUAN Song-liu, et at). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (3): 623--628.
[7] Shilpi Karmakar, Taran S, Chaudhuri B K, et al. J. Phys. D: Appl. Phys., 2005, 38: 3757--3763.
[8] Huang Yun-Hui, Yan Chun-Hua, et al. Appl. Phys. Lett., 2002, 81: 76--78.
[9] Yuan Xiao-Bo, Liu Yi-Hua, Wang Cheng-Jian, et al. Appl. Phys. Lett., 2006, 88: 042508.
[10] Huang Q, Li J, et al. J. Appl. Phys., 2001, 90: 2924--2929.
[11] Subhrangsu Taran, S. Karmakar, Sandip Chatterjee, et al. J. Appl. Phys., 2006, 99: 073703.
[12] Gupta S, Ranjit R, et al. Appl. Phys. Lett., 2001, 78: 362--364.
[13] Wang X L, Dou S X, et al. Appl. Phys. Lett., 1998, 73: 396--398.
[14] Moshnyaga V, Damaschke B, Shapoval O, et al. Nat. Mate., 2003, 2: 247--252.
[15] Helman J S, Abelest B, et al. Phys. Rev. Lett., 1976, 37: 1429--1432.
文章导航

/