研究论文

干法纺丝法制备低氧含量SiC纤维

  • 薛金根 ,
  • 王应德 ,
  • 宋永才
展开
  • 国防科技大学CFC国防科技重点实验室, 长沙 410073

收稿日期: 2006-07-12

  修回日期: 2006-09-03

  网络出版日期: 2007-07-20

Preparation of Low Oxygen SiC Fiber by Dry Spinning

  • XUE Jin-Gen ,
  • WANG Ying-De ,
  • SONG Yong-Cai
Expand
  • Key Lab of New Ceramic Fibers & Composites, National University of Defense Technology, Changsha 410073, China

Received date: 2006-07-12

  Revised date: 2006-09-03

  Online published: 2007-07-20

摘要

通过粘度、凝胶含量和XRD等手段研究了聚碳硅烷(PCS)纺丝原液的干法纺丝性能和干纺PCS纤维的自交联过程, 并对所制得的低氧含量SiC纤维的组成、结构和性能进行了表征. 结果表明, PCS/二甲苯纺丝原液的最佳纺丝粘度范围在18.0~22.0Pa·s; 干纺PCS纤维在烧成温度超过250℃后开始发生自交联反应, 在烧成温度超过550℃后, 干纺PCS纤维完全交联形成了“不熔不溶”的网状结构; 干法纺丝法制备得到的SiC纤维与空气不熔化法制得的SiC纤维相比, 氧含量大幅降低, 仅在3.6wt%左右, 结晶度较高, 其耐高温抗氧化性也有明显的改善.

本文引用格式

薛金根 , 王应德 , 宋永才 . 干法纺丝法制备低氧含量SiC纤维[J]. 无机材料学报, 2007 , 22(4) : 681 -684 . DOI: 10.3724/SP.J.1077.2007.00681

Abstract

Dry spinning performance of PCSsolution and self crosslinking process of the PCS fiber as-spun were studied by viscosity, gel content and XRD techniques. The composition, structure and mechanical properties of SiC fibers were also characterized. Results show that the optimum spinning viscosity of PCS/xylene solution is 18.0-22.0Pa·s, self crosslinking process of the PCS fiber by dry-spun begins at 250℃ during pyrolysis process, and finishes at 550℃ to form a network structure which does not melt or dissolue. The oxygen content of the final SiC fibers is decreased to about 3.6wt%. SiC fibers prepared by dry spinning have a better β-SiC microcrystalline structure and show better oxidation resistance than those prepared by the oxidation curing.

参考文献

[1] Laine R M, Babonneau F. Chemical Materials, 1993, 5: 260--279.
[2] Ichikawa H, Machino F, Mitsuno S. Journal of Materials Science, 1986, 21: 4352--4358.
[3] Shimoo T, Morita T, Okamura K. Journal of the American Ceramic Societ., 2001, 84 (12): 2975--2980.
[4] Takeda M, Urano A, Sakamoto J, et al. Journal of Nuclear Materials, 1998, 258-263: 1594--1599.
[5] 楚增勇, 冯春祥, 宋永才, 等(CHU Zeng-Yong, et al). 无机材料学报(Journal of Inorganic Materials), 2002, 17 (2): 193--201.
[6] William Toreki. Composites Science and Technology, 1994, 51: 145--159.
[7] 薛金根, 王应德, 宋永才, 等(Xue Jin-Gen, et al). 现代化工(Modern Chemical Industry), 2006, 26 (6): 48--50.
[8] Ly H Q, Taylor R, Day R J, et al. Journal of Materials Science, 2001, 36: 4045--4057.
文章导航

/