研究论文

碳热还原法制备SnO2纳米带及其表征分析

  • 倪自丰 ,
  • 应鹏展 ,
  • 罗勇 ,
  • 戴新联 ,
  • 刘涛
展开
  • 中国矿业大学 1.机电工程学院; 2. 材料科学与工程学院; 3. 信息与电气工程学院, 徐州 221028

收稿日期: 2006-07-22

  修回日期: 2006-09-09

  网络出版日期: 2007-07-20

Synthesis and Characterization of SnO2 Nanobelts by Carbothermal\\ Reduction of SnO2 Powder

  • NI Zi-Feng ,
  • YING Peng-Zhan ,
  • LUO Yong ,
  • DAI Xin-Lian ,
  • LIU Tao
Expand
  • 1. College of Mechanical and Electrical Engineering, China University of Mining & Technology, Xuzhou 221008, China; 2. School of Materials Science and Engineering, China University of Mining & Technology, Xuzhou 221008, China; 3. School of Information and Electrical Engineering, China University of Mining & Technology, Xuzhou 221008, China

Received date: 2006-07-22

  Revised date: 2006-09-09

  Online published: 2007-07-20

摘要

将高纯SnO2粉和石墨粉以一定的比例混合, 放入陶瓷舟中, 再将陶瓷舟放入一管式加热炉中加热至1100℃, 在流动的高纯氩气中保温2.5h, 制得白色絮状物. X射线衍射(XRD)分析表明, 所制备的样品为具有正方金红石结构的SnO2. 扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析表明, 所制备的样品为尺寸均匀一致的纳米带. 选区电子衍射(SAED)结果证实所制备的SnO2纳米带为单晶. 通过对其生长过程及机理分析可知, SnO2纳米带的生长是由气-固(VS)生长机制来控制的.

本文引用格式

倪自丰 , 应鹏展 , 罗勇 , 戴新联 , 刘涛 . 碳热还原法制备SnO2纳米带及其表征分析[J]. 无机材料学报, 2007 , 22(4) : 609 -612 . DOI: 10.3724/SP.J.1077.2007.00609

Abstract

The mixture of SnO2 powder and graphite was ground to ensure complete mixing, and was put into an alumina boat, then this boat was placed in the hot zone of the tube, heated from room temperature to 1100℃ and kept at this temperature for 2.5h in flowing argon. The X-ray diffraction analysis (XRD) indicates that the nanobelts are tetragonal rutile structure of SnO2. Scaning electron microscope(SEM) and transmission electron microscope(TEM) observations reveal that the nanobelts are uniform. The selected-area electron diffraction analysis(SAED) demonstrates that the nanobelts are single crystal . The SnO2 nanobelts might grow via a vapor-solid(VS) process.

参考文献

[1] Koki A, Sasakura H. Jpn. J. Appl. Phys., 1970, 9 (5): 582.
[2] Tatsuyama C, Ichmura S. Jpn. J. Appl. Phys., 1976, 15 (5): 843--847.
[3] Yamazoe N. Sens. Actuators B, 1991, 5 (1-4): 7--19.
[4] 龚树萍,刘欢,周东祥(GONG Shu-Ping, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (3): 521--526.
[5] He Y S, Campbell J C, Murphy R C, et al. J. Mater. Res., 1993, 8 (12): 3131--3134.
[6] Wang D Z, Wen S L, Chen J, et al. Phys. Rev. B, 1994, 49 (20): 14282-14285.
[7] Wang W L, Liao K J. Thin Solid Films, 1991, 195 (1-2): 193--198.
[8] Yu K N, Xiong Y H, Liu Y L, et al. Phys. Rev. B, 1997, 55 (4): 2666--2671.
[9] Kim T W, Lee D U, Choo D C, et al. Appl. Phys., 2001, 90 (1): 175--180.
[10] Kolmakov V, Zhang Y X, Cheng G S, et al. Adv. Mater., 2003, 15 (12): 997--1000.
[11] Leite E R, Weber I T, Longo E, et al. Adv. Mater., 2000, 12 (12): 965--968.
[12] Law M, Kind H, Messer B, et al. Angew.Chem. Int. Edn Engl., 2002, 41 (13): 2405--2408.
[13] Pan Z W, Dai Z R, Wang Z L. Nanobelts of Semiconducting Oxides. Science, 2001, 291 (5510): 1947--1949.
[14] Ma C, Ding Y, Moore D, et al, Am. Chem. Soc., 2004, 126 (3): 708--709.
[15] Dai Z R, Gole J L, Stout L D, et al. Phys. Chem. B, 2002, 106 (6): 1274--1279.
[16] Sun S H, Meng G W, Wang Y W, et al. Appl. Phys. A, 2003, 76 (2): 287--289.
[17] WuX C, Song W H, Zhao B, et al. Chem. Phys. Lett., 2001, 349 (3): 210--214.
[18] Peng H Y, Wang N, Zhou X T, et al. Chem. Phys. Lett., 2002, 359 (3): 241--245.
[19] Gundiah G, Govindaraj A, Rao C N R. Chem. Phys. Lett., 2002, 351 (3): 189--194.
[20] Yao B D, Chan Y C, Wang N. Appl. Phys. Lett., 2002, 81 (5): 757--759.
[21] Yang P D, Lieber C M. Mater. Res., 1997, 12 (11): 2981--2996.
[22] Hu J Q, Ma X L, Shang N G, et al. Phys. Chem. B, 2002, 106 (15): 3823--3826.
[23] Greiner E S, Gutowski J A, Ellis W C. J. Appl. Phys., 1961, 32 (11): 2489--2490.
[24] Wagner R S, Treuting. J. Appl. Phys., 1961, 32 (11): 2490--2491.

文章导航

/