研究论文

镁离子掺杂对 LiFePO4/C电化学性能和结构的影响

  • 杨书廷 ,
  • 刘玉霞 ,
  • 尹艳红 ,
  • 王辉 ,
  • 崔成伟
展开
  • 1. 河南师范大学化学与环境科学学院, 新乡 453007; 2. 河南省新能源材料工程研究中心, 新乡 453007; 3. 新乡市中科科技有限公司, 新乡 453002

收稿日期: 2006-08-18

  修回日期: 2006-10-23

  网络出版日期: 2007-07-20

Effects of Mg Ion Doping on the Electrochemical Performances and
Structure of LiFePO4 /C

  • YANG Shu-Ting ,
  • LIU Yu-Xia ,
  • YIN Yan-Hong ,
  • WANG Hui ,
  • CUI Cheng-Wei
Expand
  • 1. College of Chemistry and Environmental Science, Henna Normal University, Xinxiang 453007, China; 2. Research Institute of New Energy & Material Engineering of Henan Province, Xinxiang 453007, China; 3. Zhongke Science & Technology CO. Ltd, Xinxiang 453002, China

Received date: 2006-08-18

  Revised date: 2006-10-23

  Online published: 2007-07-20

摘要

以乳酸镁做为Mg2+的掺杂源和部分的碳源, 在惰性氛围下用模板-固相合成法合成了掺Mg2+的LiFePO4/C复合正极材料, 考察了Mg2+对于目标化合物电化学和物理性能的影响. 研究结果表明, 在C/3倍率下材料掺杂前后第二个循环的放电容量分别为140.5和159.9mAh/g, 循环20次后容量为140.4 和162.1mAh/g. 电化学交流阻抗表明, 掺杂后的材料阻抗Rct从180Ω 减小到120Ω. 掺杂后振实密度比掺杂前提高了0.229g·cm-3.

本文引用格式

杨书廷 , 刘玉霞 , 尹艳红 , 王辉 , 崔成伟 . 镁离子掺杂对 LiFePO4/C电化学性能和结构的影响[J]. 无机材料学报, 2007 , 22(4) : 627 -630 . DOI: 10.3724/SP.J.1077.2007.00627

Abstract

Stoichiometric Mg doped LiFePO4/C cathode material was synthesized through a templatesolid state reaction in an inert atmosphere using magnesium lactate as dopant and part of carbon source. Effects of Mg2+ doping on the electrochemical and physical performances of the cathode materials were investigated. At 1/3C discharge rate, the secondly reversible specific capacity of the Mg-doped LiFePO4/C is nearly 20mAh/g higher than that of the undoped one. After 20 cycles, the capacity of the former is 162.1mAh/g, 22mAh/g higher than that of the latter. Impedance R ct of the Mg-doped material is 120Ω, while that of the undoped material is 180Ω. The tap density of Mg-doped material is
also improved by 0.229g·cm-3 compared with undoped material.

参考文献

[1] Padhi A K, Nanjundaswamy K S, Goodenought J B. J. Electrochem. Soc., 1997, 144 (4): 1188--1194.
[2] Hyung S K, Byung W C, Won I C. J. Power Source, 2004, 132: 235--239.
[3] Takahashi M, Tobishima S, Takei K, et al. Solid State Ionics, 2002, 148: 283--289.
[4] Chung S Y, Bloking J T, Chiang Y M. Nat Mater, 2002, 1 (2): 123--128.
[5] Prosini P P, Lisi M, Zane D, et al. Solid State Ionics, 2002, 148: 45--51.
[6] Yamada A, Chung S C, Hinokuma K. J. Electrochem. Soc., 2001, 148 (3): A224--A229.
[7] Park K S, Son J T, Chung H T, et al. Solid State Commun., 2004, 129: 311--314.
[8] Huang H, Yin S C, Nazar L F. Electrochem and Solid State Lett., 2001, 4 (10): A170--A172.
[9] 卢俊彪, 唐子龙, 张中太, 等(LU Jun-Biao, et al). 无机材
料学报(Journal of Inorganic Material), 2005, 20 (3): 666--669.
[10] Ravet N, Goodenough J B, Besner S, et al. The 1999 Joint International Meeting, Honolulu, Hawaii, 1999. 17--22.
[11] YANG Shu-ting, ZHAO Na-hong, DONG Hong-yu, et al. Electrochim Acta, 2005, 51: 166--171.
[12] Chen Z, Dahn J R. J. Electrochem. Soc., 2002, 149: A1184--A1189.
[13] Chung S Y, Chiang Y M. Electrochem and Solid State Lett., 2003, 6 (12): A278--A281.
[14] Herle P S, Ellis B, Coombs N, et al. Nat. Mater, 2004, 3 (3): 147--152.
[15] 卢俊彪, 唐子龙, 张中太, 等(LU Jun-biao, et al). 物理
化学学报(Acta Phys.-Chim. Sin.), 2005, 21 (3): 319--323.
文章导航

/