研究论文

控制O2流量生长结状 ZnO微纳米棒及其特性研究

  • 李介胜 ,
  • 朱丽萍 ,
  • 唐海平 ,
  • 何海平 ,
  • 叶志镇 ,
  • 赵炳辉
展开
  • 浙江大学硅材料国家重点实验室, 杭州 310027

收稿日期: 2006-08-17

  修回日期: 2006-09-30

  网络出版日期: 2007-07-20

Preparation and Characterization of Bat-like ZnO Micro- and Nanorods by Adjusting Oxygen Flux

  • LI Jie-Sheng ,
  • ZHU Li-Ping ,
  • TANG Hai-Ping ,
  • HE Hai-Ping ,
  • YE Zhi-Zhen ,
  • ZHAO Bing-Hui
Expand
  • State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, China

Received date: 2006-08-17

  Revised date: 2006-09-30

  Online published: 2007-07-20

摘要

采用热蒸发法以锌粉和二水醋酸锌作为源材料在Si(111)衬底上制备了高密度的ZnO微纳米棒, 制得的每根ZnO棒明显分为直径不同的四段. 利用X射线衍射、扫描电镜、透射电镜、拉曼光谱和光致发光谱等测试手段对制备的样品进行了形貌、结构和光学性能的分析, 结果表明制备的ZnO棒晶体质量良好, 仅存在很少量的缺陷. 通过讨论该结构的生长机理, 发现O2分压对制备的ZnO微纳米棒的形貌有显著的影响, 调节O2流量可控制ZnO纳米结构的形貌.

本文引用格式

李介胜 , 朱丽萍 , 唐海平 , 何海平 , 叶志镇 , 赵炳辉 . 控制O2流量生长结状 ZnO微纳米棒及其特性研究[J]. 无机材料学报, 2007 , 22(4) : 613 -616 . DOI: 10.3724/SP.J.1077.2007.00613

Abstract

High-density bat-like ZnO micro- and nanorods were prepared on Si(111) substrates by a thermal evaporation method using Zn powders and zinc acetate dihydrate (ZA) as the source materials. X-ray diffraction, field emission scanning electron microscope, transmission electron microscope, Raman scattering and photoluminescence were used to characterize the structural and optical properties of the obtained samples. The results indicate that the individual rod has four knots with different diameters, the rods are a high-quality single crystal with a few defects. The growth mechanism of the structures proposed reveals that oxygen partial pressures play an important role in the growth process. The shape of ZnO nanostructures can be controlled by adjusting oxygen flux.

参考文献

[1] Tang Z K, Wong G K L, Yu P, et al. Appl. Phys. Lett., 1998, 72 (25): 3270--3272.
[2] Keis K, Vayssieres L, Lindquist S, et al. Nanostruct. Mater., 1999, 12 (1-4): 487--490.
[3] Huang M H, Mao S, Feick H, et al. Science., 2001, 292 (5523): 1897--1899.
[4] Gao P X, Ding Y, Wang Z L. Nano Lett., 2003, 3 (9): 1315--1320.
[5] Pan Z W, Dai Z R, Wang Z L. Science., 2001, 291 (5510): 1947--1949.
[6] Wu J J, Liu S C, Wu T U, et al. Appl. Phys. Lett., 2002, 81 (7): 1312--1314.
[7] Hu J Q, Bando Y, Zhan H J, et al. Appl. Phys. Lett., 2003, 83 (21): 4414--4416.
[8] Zhang Y, Wang N, Gao S. Chem Mater., 2002, 14 (8): 3564--3568.
[9] Huang M H, Wu Y Y, Feick H, et al. Adv. Mater., 2001, 13 (2): 113--116.
[10] Lyu S C, Zhang Y, Lee C J, et al. Chem. Mater., 2003, 15 (17): 3294--3299.
[11] Yan H Q, He R R, Pham J, et al. Adv. Mater., 2003, 15 (5): 402--405.
[12] Gao P X, Wang Z L. Appl. Phys. Lett., 2004, 84 (15): 2883--2885.
[13] 于伟东, 李效民, 高相东(YU Wei-Dong, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (2): 332--336.
[14] Suh H W, Kim G Y, Jung Y S, et al. J. Appl. Phys., 2005, 97 (4): 044305.
[15] Lao J Y, Huang J Y, Wang D Z, et al. Nano lett., 2003, 3 (2): 235--238.
[16] Kaschner A, Haboeck U, Strassburg M, et al. Appl. Phys. Lett., 2002, 80 (11): 1909--1911.
[17] Rajalakshmi M, Arora A K, Bendre B S, et al. J. Appl. Phys., 2000, 87 (5): 2445--2448.
[18] Park W I, Kim D H, Jung S W, et al. Appl. Phys. Lett., 2002, 80 (22): 4232--4234.
[19] Ye C H, Fang X S, Hao Y F, et al. J. Phys. Chem. B., 2005, 109 (42): 19758--19765.
[20] Laudise R A, Ballman A A. J. Phys. Chem., 1960, 64 (5): 688--691.
[21] Liao L, Li J C, Liu D H, et al. Appl. Phys. Lett., 2005, 86 (8): 083106.
[22] Zhang B P, Binh N T, Segawa Y, et al. Appl. Phys. Lett., 2004, 84 (4): 586--588.

文章导航

/