研究论文

金属对炭黑转化为洋葱状中空结构纳米碳的影响

  • 赵木 ,
  • 宋怀河 ,
  • 连文涛 ,
  • 陈晓红 ,
  • 田晓冬 ,
  • 陈磊
展开
  • 北京化工大学化工资源有效利用国家重点实验室, 北京100029

收稿日期: 2006-07-25

  修回日期: 2006-09-20

  网络出版日期: 2007-07-20

Effect of Transition Metal Addition on the Transformation of Carbon Black to Hollow Onion-like Nanostructural Carbon

  • ZHAO Mu ,
  • SONG Huai-He ,
  • LIAN Wen-Tao ,
  • CHEN Xiao-Hong ,
  • TIAN Xiao-Dong ,
  • CHEN Lei
Expand
  • State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Received date: 2006-07-25

  Revised date: 2006-09-20

  Online published: 2007-07-20

摘要

研究了炭黑分别在 Fe、Co、Ni 三种金属化合物作用下的催化转化行为, 以期使炭黑质点中不连续的无规则小石墨片层重新组装、构筑成洋葱状中空结构纳米碳. 采用透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)、X射线衍射(XRD)和Raman光谱分析表征了炭黑及其催化炭化产物的微观形貌和结构. 结果表明: 尽管三种金属催化剂均可通过溶碳-析出机制形成过渡态碳包覆纳米金属颗粒, 继而构筑成由准球形同心石墨壳层组合的洋葱状中空结构纳米碳, 但三种金属催化剂显示不同的催化效果, 终碳产物的形态和纯度差异较大, 其中以Fe 的催化效果最好.

本文引用格式

赵木 , 宋怀河 , 连文涛 , 陈晓红 , 田晓冬 , 陈磊 . 金属对炭黑转化为洋葱状中空结构纳米碳的影响[J]. 无机材料学报, 2007 , 22(4) : 599 -603 . DOI: 10.3724/SP.J.1077.2007.00599

Abstract

Hollow onion-like nanostructural carbon was constructed from acetylene carbon black with the aid of Fe, Co and Ni catalysts through the catalytic carbonization. The morphologies and structures of pristine carbon black and its carbonized products were investigated by using TEM, HRTEM, XRD and Raman spectroscopy measurements. The hollow onion-like nanostructural carbon mainly consists of quasi-spherically concentric graphite shells enclosing voids with interlayer spacing of 0.34nm. It is originated from the carbon-encapsulated metal nanoparticles by the dissolution-precipitation process between carbon and transition metal catalysts. The product catalyzed by Fe exhibits the typical and regular shape of onion-like nanostructural carbon and higher degree of graphitization. These imply that Fe possesses the better catalytic effect among these three metals.

参考文献

[1] Franklin R E. Proc. R. Soc. A., 1951, 196: 209.
[2] Iijima S. J. Cryst. Growth, 1980, 50: 675--683.
[3] Kroto H W, Heath J R, orien S C, et al. Nature, 1985, 318: 162--163.
[4] Ugarte D. Nature, l992, 359: 707--709.
[5] Kuznetsov V I, Chuvilin A L, Bytenko Y V, et a1. Chem. Phys. Lett., 1994, 222: 343--348.
[6] Kuznetsov V L, Chuvilin A I, Moroz E M, et a1. Carbon, 1994, 32: 873--882.
[7] Zhu Z P, Su D S, Weiberg G, Schlagl R. Nano. Lett., 2004, 4: 2255--2259.
[8] Ponomareva I V, Chernozatonskii L A. Microelectronic Engineering, 2003, 69: 625--628.
[9] Zhang Q L, oBrien S C, Heath J R, et al. J. Phys. Chem., 1986, 90: 525--528. [10] Kroto H W, McKay K. Nature, 1988, 331: 328--331.
[11] Song H H, Chen X H. Chem. Phys. Lett., 2003, 374: 400--404.
[12] Huo J P, Song H H, Chen X H. Carbon, 2004, 42: 3177--3182.
[13] Huo J P, Song H H, Chen X H, et al. Carbon, 2006, 44: 2849--2852.
[14] 杜爱兵, 刘旭光, 许并社(DU Ai-bing, et al). 无机材料学报 (Journal of Inorganic Materials), 2005, 20 (4): 779--784.
[15] Johnson M P, Locke R W, Donnet J B, et al. Rubber. Chem. Technol., 2000, 73: 875--888.
[16] Cataldo F. Carbon, 2002, 40: 157--162.
[17] Harris P J F. Chem. Phys. Carbon, 2003, 28: 22--28.
[18] Moisala A, Nasibulin A G, Kauppinen E I. J. Phys.: Condens Matter., 2003, 15: 3011--3035.
[19] Yang R T, Chen J P. J. Catal., 1989, 115: 52--64.
[20] Ruoff R S, Lorents D C. Carbon, 1995, 33: 925--930.
[21] Eizenberg M, Blakely J M. J. Chem. Phys., 1979, 71: 3467--3477.
[22] Hamilton J C, Blakely J M. Surf. Sci., 1980, 91: 199--217.

文章导航

/