研究论文

溶胶-凝胶生物活性玻璃纤维的制备及其体外矿化性能研究

  • 李玉莉 ,
  • 陈晓峰 ,
  • 王迎军 ,
  • 赵娜如
展开
  • 1. 华南理工大学生物材料研究所, 广州 510640; 2. 华南理工大学特种功能材料及其制备新技术教育部重点实验室, 广州 510640

收稿日期: 2006-08-18

  修回日期: 2006-10-20

  网络出版日期: 2007-07-20

Preparation and Bio-mineralization in vitro of the Sol-Gel Derived

  • LI Yu-Li ,
  • CHEN Xiao-Feng ,
  • WANG Ying-Jun ,
  • ZHAO Na-Ru
Expand
  • 1. Institute of Biomedical Material South China University of Technology, Guangzhou 510640, China; 2. Key Laboratory of Specially Functional Materials and Advanced Manufacturing Technology of Ministry of Education, South China University of Technology, Guangzhou 510640, China

Received date: 2006-08-18

  Revised date: 2006-10-20

  Online published: 2007-07-20

摘要

采用溶胶-凝胶法制备出CaO-P2O5-SiO2系统生物活性玻璃纤维. 通过倒置相差显微镜、SEM、FTIR等测试手段考察了生物活性玻璃纤维的微观形貌和显微结构; 采用生物材料的体外实验方法以及XRD、SEM、FTIR等测试手段研究了生物活性玻璃纤维在模拟生理体液(SBF)中浸泡后的表面反应产物的形成机理、结晶程度和微观形貌. 结果表明, 这种生物活性玻璃纤维是一种不连续的短纤维, 具有较好的纤维形态和较高的生物活性, 在短时间内即可在模拟生理体液(SBF)中形成茸毛状A类碳酸羟基磷灰石(HCA)层.

本文引用格式

李玉莉 , 陈晓峰 , 王迎军 , 赵娜如 . 溶胶-凝胶生物活性玻璃纤维的制备及其体外矿化性能研究[J]. 无机材料学报, 2007 , 22(4) : 617 -621 . DOI: 2007 DOI:10.3724/SP.J.1077.2007.00617

Abstract

The bioactive glass fibers in the system CaO-P2O5-SiO2 were prepared by the sol-gel process. The composition and microstructure of the sol-gel derived bioactive glass fibers before and after immersion in the simulated body fluid (SBF) were investigated by inverted phase microscope, SEM and FTIR techniques. The mechanism of the calcium phosphates micro-crystals growth was discussed from the view of the crystallography. The results show that the bioactive glass fibers are discontinuous short fibers, and the short sol-gel bioactive glass fibers have a satisfactory shape and a high bioactivity owing to the rapid formation of downy A-type hydroxyl-carbonate-apatite (HCA) on the surface of bioactive glass fibers in SBF.

参考文献

[1] Ducheyne P, Hench L L. J. Mater Sci., 1982, 17 (2): 595.
[2] Jiang G, Evans M E, Jones I A, et al. Biomaterials., 2005, 26: 2281--2288.
[3] Marcolongo Michele, Ducheyne Paul, Garino Jonathan, et al. J Biomed Mater Res., 1998, 39: 161--170.
[4] Marcolongo Michele, Ducheyne Paul, LaCourse William C. J Biomed Mater Res., 1997, 37: 440--448.
[5] Pirhonen E, Niiranen H, Niemela T, et al. J Biomed Mater Res., 2006, 77B: 227--233.
[6] de Diego Matilde A, Coleman Nichola J, Hench Larry L. J Biomed Mater Res(Appl Biomater)., 2000, 53: 199--203.
[7] Hench Larry L. Current Opinion in Solid State & Materials Science., 1997, 2: 604--610.
[8] Orefice Rodrigo, Hench Larry L, Clark Arthur E, et al. J Biomed Mater Res., 2001, 55: 460--467.
[9] Domingues Rosana Z, Clark Arthur E, Brennan Anthony B. J Biomed Mater Res., 2001, 55: 468--474.
[10] 林开利, 常江, 汪正(LIN Kai-Li, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (3): 692--698.
[11] Pryce Russell S, Hench Larry L. J Mater Chem., 2004, 14: 2303--2310.
[12] 陈晓峰, 王迎军, 等. 材料研究学报, 2003, 17 (3): 268--275.
[13] Ito Atsuo, Nakamura Satoshi, Aoki Hideki. Journal of Crystal Growth., 1996, 163: 311--317.
[14] Koutsopoulos S. J Biomed Mater Res., 2002, 62: 600--612.
[15] 张克从, 张乐hui. 晶体生长科学与技术, 第二版. 北京: 科学出版社, 1997. 221--228.
[16] Liu Xuanyong, Ding Chuanxian. Materials Lette., 2002, 57 (3): 652--655.
[17] Aoki Hideki. Science and Medical Applications of Hydroxyapatite. 1st edition. Tokyo: Takayama press system center Co, 1991. 59--64.
文章导航

/