研究论文

共沉淀法制备钒掺杂钛酸铋粉体及其陶瓷性能研究

  • 唐庆圆 ,
  • 李耀刚 ,
  • 阚艳梅 ,
  • 张国军 ,
  • 王佩玲
展开
  • 1. 中国科学院上海硅酸盐研究所, 高性能陶瓷和超微结构国家重点实验室, 上海 200050; 2. 东华大学材料科学与工程学院, 上海 200051

收稿日期: 2006-08-18

  修回日期: 2006-10-20

  网络出版日期: 2007-07-20

Preparation of Vanadium Doped Bi4Ti3O12 Powder by Co-precipitation and Dielectric Property of Sintered Ceramics

  • TANG Qing-Yuan ,
  • LI Yao-Gang ,
  • KAN Yan-Mei ,
  • ZHANG Guo-Jun ,
  • WANG Pei-Ling
Expand
  • 1. State Key Lab of High Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. College of Material Science and Engineering, DongHua University, Shanghai 200051, China

Received date: 2006-08-18

  Revised date: 2006-10-20

  Online published: 2007-07-20

摘要

采用共沉淀法制备了掺钒钛酸铋粉体, 研究了粉体的晶化过程、微观形貌和烧结性能. 与传统固相反应法相比, 共沉淀法合成钛酸铋相的反应可在550℃完成, 比固相反应法低250℃左右, 所得粉体的粒径<100nm. 此外, 共沉淀法制备的粉体具有良好的烧结性能, 在900℃达到理论密度的96%. 与固相法烧结陶瓷相比, 共沉淀粉体制备的材料具有更低的介电损耗.

本文引用格式

唐庆圆 , 李耀刚 , 阚艳梅 , 张国军 , 王佩玲 . 共沉淀法制备钒掺杂钛酸铋粉体及其陶瓷性能研究[J]. 无机材料学报, 2007 , 22(4) : 595 -598 . DOI: 10.3724/SP.J.1077.2007.00595

Abstract

Vanadium doped Bi4Ti3O12powder was prepared by a co-precipitation method and its phase evolution process, microstructure and sintering behavior were investigated. The results indicate that Bi4Ti3O12 crystalline phase with grain sizes of less than 100nm can be obtained by calcination of the precursor at 550℃, which is 250℃ lower than that of traditional solid reaction. The powder possesses a good sintering activity and the bulk density of sintered samples can reach 96% of theoretical value when sintering at 900℃ for 1h. In comparison to the material prepared by solid reaction, the sample made from the co-precipitation powder also has lower dielectric loss.

参考文献

[1] Park P H, Kang B S, Bu S D, et al. Nature (London), 1999, 401 (6754): 682--684.
[2] Takenaka T, Sakata K. J. Appl. Phys., 1984, 55 (4): 1092--1099.
[3] Toda K, Takenaka T, Sakata K. J. Appl. Phys., 1984, 56 (7): 2187--2188.
[4] Joshi P C, S. Krupanidhi B. J. Appl. Phys., 1992, 72 (12): 5827--5833.
[5] Horn J A, Zhang S C, Selvaraj U, et al. J. Am. Ceram. Soc., 1999, 82 (4): 921--926.
[6] Prasada Rao A V, Robin A I, Komarnani S. Mater. Lett., 1996, 28 (4-6): 469--473.
[7] Pookmanee P, Uriwilast P, PhanichpantChen S. Ceram. Int., 2004, 30 (7): 1913--1915.
[8] 阚艳梅, 靳喜海, 王佩玲, 等(KAN Yan-Mei, et al).无机材料学报(Journal of Inorganic Materials), 2002, 17 (1): 51--55.
[9] Tomar M S, Melgarejo R E, Hidalgo A, et al. Appl. Phys. Lett., 2003, 83 (2): 341--343.
[10] Chon U, Shim J S, Jang H M. Solid State Commun., 2004, 129 (7): 465--468.
[11] Yao Y Y, Song C H, Bao P, et al. Appl. Phys. Lett., 2004, 95 (6): 3126--3130.
[12] Chaudhuri A R, Laha A, Krupanidhi S B. Solid State Commun., 2005, 133 (9): 611--614.
[13] Werner P E. Ark. Kemi., 1964, 31: 513--516.
[14] Tang Q Y, Kan Y M, Li Y G, et al. Script Mater., 2006, 54 (12): 2075--2080.
[15] Shen Z J, Liu J, Grins J, et al. Adv. Mater., 2005, 17 (6): 676--680.
文章导航

/