研究论文

含MFI结构单元的介孔Ti-HMS-1的合成、表征及催化氧化性能

  • 马乾志 ,
  • 郭杨龙 ,
  • 王艳芹 ,
  • 郭 耘 ,
  • 张志刚 ,
  • 卢冠忠
展开
  • (结构可控先进功能材料及其制备教育部重点实验室, 华东理工大学工业催化研究所, 上海 200237)

收稿日期: 2006-10-17

  修回日期: 2006-12-16

  网络出版日期: 2007-09-20

Synthesis, Characterization and Catalytic Oxidation Properties of Mesoporous Ti-HMS-1 Containing MFI Structure Unites

  • MA Qian-Zhi ,
  • GUO Yang-Long ,
  • WANG Yan-Qin ,
  • GUO Yun ,
  • ZHANG Zhi-Gang
Expand
  • (Lab for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, China)

Received date: 2006-10-17

  Revised date: 2006-12-16

  Online published: 2007-09-20

摘要

采用TS-1前驱体作硅源和钛源, 以十二胺为模板剂, 在中性和室温条件下合成了介孔含钛分子筛Ti-HMS-1. 采用XRD、TEM、低温N2吸附、FT-IR和UV-Vis等方法对合成的分子筛进行了表征; 以苯乙烯的催化氧化反应为模型反应, 考察了合成的Ti-HMS-1的催化氧化性能. 结果表明, Ti-HMS-1具有“worm-like”介孔结构, 但长程有序度较低, 孔壁部分含有MFI的次级结构单元, 在373K沸水中水煮50h后, Ti-HMS-1仍能较好地保持原有的介孔结构, 表明Ti-HMS-1具有较高的水热稳定性. 进入分子筛骨架的钛原子为催化剂的活性中心, 对于苯乙烯氧化反应, 具有较高的催化活性, 对产物的选择性与Ti-HMS接近.

本文引用格式

马乾志 , 郭杨龙 , 王艳芹 , 郭 耘 , 张志刚 , 卢冠忠 . 含MFI结构单元的介孔Ti-HMS-1的合成、表征及催化氧化性能[J]. 无机材料学报, 2007 , 22(5) : 943 -948 . DOI: 10.3724/SP.J.1077.2007.00943

Abstract

Ti-incorporated Ti-HMS-1 mesoporous molecular sieve was synthesized at ambient temperature by the assembly of
TS-1 precursors using dodecylamine (DDA) surfactant as template agent, and characterized by XRD, TEM, nitrogen adsorption, FT-IR, UV-Vis diffuse reflectance. The results show that Ti-HMS-1 prepared consists of the mesoporous structure with ''worm-like'' holes and MFI structure unites, and the Ti atoms are incorporated into the framework. After treated in the boiling water at 373K for 50h, Ti-HMS-1 remains most of the mesoporous structures, which indicates Ti-HMS-1 has higher hydrothermal stability as compared with Ti-HMS. For the oxidation of styrene using H2O2 as oxidant, the catalytic performance of Ti-HMS-1 is higher obviously than that of Ti-HMS or TS-1. The selectivity of Ti-HMS-1 to products is similar to that of Ti-HMS.

参考文献

[1] Taramasso M, Perego G, Notari B. US 4 410 501, 1983.
[2] Kresge C T, Leonowicz M E, Roth W J, et al. Nature, 1992, 359: 710--712.
[3] Tanev P T, Chibwe M, Pinnavaia T J. Nature, 1994, 368 (24): 321--323.
[4] Gontier S, Tuel A. Zeolites, 1995, 15: 601--610.
[5] 罗 勇, 卢冠忠, 郭杨龙, 等. 华东理工大学学报, 2002, 28 (5): 529--532.
[6] Jang S H, Kim M J, Ko J R, et al. Bull. Korean Chem. Soc., 2005, 26 (8): 1214--1218.
[7] Zhang W Z, Michael F, Wang J L, et al. J. Am. Chem. Soc., 1996, 118 (38): 9164--9171.
[8] Liu Y, Zhang W, Pinnavia T J. J. Am. Chem. Soc., 2000, 122 (36): 8791--8792.
[9] Han Y, Xiao F S, Wu S, et al. J. Phys. Chem. B, 2001, 105 (33): 7963--7966.
[10] Wang R W, Hu L, Chu B, et al. Catal. Commun., 2005, 6: 485--490.
[11] Thangaraj A, Sivasanker S. J. Chem. Soc. Chem. Commun., 1992. 123--124.
[12] Blasco T, Corma A, Navarro M T, et al. J. Catal., 1995, 156: 65--74.
[13] Solbery S M, Kumar D, Landry C C. J. Phys. Chem. B, 2005, 109 (51): 24331--24337.
[14] Maria D A, Luan Z H, Klinowski J. J. Phys. Chem., 1996, 100 (6): 2178--2182.
[15] Ravishankar R, Kirschhock C, Schoeman B J, et al. J. Phys. Chem. B, 1998, 102 (15): 2633--2639.
[16] Blasco T, Camblor M A, Corma A, et al. J. Am. Chem. Soc., 1993, 115: 11806--11813.
[17] Camblor M A, Costantini M, Corma A, et al. Chem. Commun., 1996. 1339--1340.
[18] Laha S C, Kumar R. J. Catal., 2001, 204: 64--70.
[19] Hulea V, Dumitriu E. Appl. Catal. A, 2004, 277: 99--106.
文章导航

/