将具有锐钛矿晶粒的TiO2溶胶与苯丙乳液混合制得涂膜液, 采用浸渍提拉法制备薄膜, 利用选择性溶解的方法将薄膜中的苯丙乳液粒子溶解去除, 在室温下获得锐钛矿型TiO2多孔薄膜. 采用TEM、SEM等分析方法考察了TiO2溶胶添加量、苯丙乳液添加量、涂膜液陈化时间以及乳液粒子溶解去除条件等因素对TiO2薄膜表面形貌的影响. 结果表明涂膜液中TiO2溶胶与苯丙乳液添加量的比例影响了孔的形态; 涂膜液的陈化时间是影响薄膜表面孔致密程度的关键因素, 陈化时间的增长有利于薄膜表面形成较为密集的孔洞; 采用超声波能大大提高薄膜中苯丙乳液粒子的去除效率. 最后得出了制备TiO2多孔薄膜的较为合适的涂膜液配比及工艺条件: 15g TiO2溶胶、0.2g苯丙乳液、10g H2O; 涂膜液陈化15d, 薄膜浸入甲苯后, 超声波振荡 10min.
A solution consisting of styrene-acrylate spheres and anatase TiO2 colloidal particles was synthesized. The films were
prepared from resultant solution by a dip-coating technique, and then styrene-acrylate spheres were preferentially dissolved in toluene, and the porous anatase TiO2 films were obtained at room temperature. Transmission electron microscope (TEM)
and scanning electron microscope (SEM) were adopted to analyze the influence of the styrene-acrylate emulsion consumption, the dosage of TiO2 sol, the aging time of the solutions and the conditions of eliminating styrene-acrylate spheres
on the morphology of the films. The results show that the mass ratio of TiO2 sol and styrene-acrylate emulsion affects the morphology of the pores; the aging time is a dominant factor for the formation of the dense pores on the surface;
styrene-acrylate spheres can be eliminated effectively by the ultrasonic oscillation. The results also indicate that the appropriate proportion is: 15g TiO2 sol+0.2g styrene-acrylate emulsion+10g H2O; the solutions are aged for 15d, and the films are soaked into toluene and vibrated by ultrasonic for 10min.
[1] Wark M, Tschirch J, Bartels O, et al. Microporous Mesoporous Mat., 2005, 84 (1-3): 247--253.
[2] Guo B, Liu Z L, Hong L, et al. Surf. Coat. Technol., 2005, 198 (1-3): 24--29.
[3] 何 俣, 朱永法, 喻 方(He Yu, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19 (2): 385--390.
[4] Trapalis C C, Keivanidis P, Kordas G, et al. Thin Solid Films, 2003, 433 (1-2): 186--190.
[5] Yusuf M M, Imai H, Hirashima H. J. Non-Cryst Solids, 2001, 285 (1-3): 90--95.
[6] 余家国, 赵修建(YU Jia-Guo, et al). 无机材料学报(Journal of Inorganic Materials), 2000, 15 (2): 347--355.
[7] Liu K S, Fu H G, Shi K Y, et al. J. Phys. Chem. B., 2005, 109 (40): 18719--18722.
[8] Hsu C S, Lin C K, Chan C C, et al. Thin Solid Films, 2006, 494 (1-2, 3): 228--233.
[9] Tatsuma T, Lkezawa A, Ohko Y, et al. Adv. Mater., 2000, 12 (9): 643--646.
[10] 胡行方, 快素兰, 于 云, 等(HU Xing-Fang, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (6): 1463--1466.
[11] Doherty S, Fitzmaurice D. J. Phys. Chem., 1996, 100 (25): 10732--10738.
[12] Stathatos E, Lianos P, Falaras P, et al. Langmuir, 2000, 16 (5): 2398--2400.
[13] Karuppuchamy S, Nonomura K, Yoshida T, et al. Solid State Ionics, 2002, 151 (1-4): 19--27.
[14] Subramanian G, Manoharan V N, Thorne J D, et al. Adv. Mater., 1999, 11 (15): 1261--1265.
[15] Kuai S L, Badilescu S, Bader G, et al. Adv. Mater., 2003, 15 (1): 73--75.
[16] Shimizu K, Imai H, Hirashima H, et al. Thin Solid Film, 1999, 351 (1-2): 220.
[17] Gutiérrez-Tauste D, Zumeta I, Vigil E, et al. J. Photochem. Photobiol. A-Chem., 2005, 175 (2-3): 165--171.
[18] Zhang D S, Yoshida T, Minoura H. Adv. Mater., 2003, 15 (10): 814--817.
[19] 方 明, 高基伟, 申乾宏, 等(FANG Ming, et al). 硅酸盐学报(Journal of the Chinese Ceramic Society), 2006, 34 (4): 438--441.
[20] 杨 辉, 申乾宏, 高基伟. 催化学报, 2005, 26 (10): 839--841.