研究论文

不同晶型纳米TiO2的溶剂热合成及其光催化活性研究

  • 秦 纬 ,
  • 刘建军 ,
  • 左胜利 ,
  • 于迎春 ,
  • 郝郑平
展开
  • (1. 北京化工大学理学院, 北京 100029; 2.中国科学院生态环境研究中心, 北京 100085)

收稿日期: 2006-09-18

  修回日期: 2006-11-17

  网络出版日期: 2007-09-20

Solvothermal Synthesis of Nanosized TiO2 particles with Different Crystal Structures and Their Photocatalytic Activities

  • QIN Wei ,
  • LIU Jian-Jun ,
  • ZUO Sheng-Li ,
  • YU Ying-Chun ,
  • HAO Zheng-Ping
Expand
  • (1. Faculty of Sciences, Beijing University of Chemical Technology, Beijing 100029, China; 2. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)

Received date: 2006-09-18

  Revised date: 2006-11-17

  Online published: 2007-09-20

摘要

采用不同的醇溶剂, 以六亚甲基四胺为沉淀剂, 以TiCl3为前驱体, 通过溶剂热的方法控制合成出纳米级的锐钛矿型、金红石型和板钛矿型的二氧化钛. 通过XRD、TEM、UV-Vis光谱和XPS能谱对其进行了表征, 研究了醇的种类、 六亚甲基四胺的量对二氧化钛相组成及光催化性能的影响. 结果发现, 以甲醇为溶剂, 酸性条件有利于生成锐钛矿相, 碱性条件有利于生成金红石相和板钛矿相. 溶剂热条件下可以得到氮掺杂的TiO2-xNx. 光催化降解甲基橙活性结果表明锐钛矿和板钛矿混晶具有最好的光催化活性.

本文引用格式

秦 纬 , 刘建军 , 左胜利 , 于迎春 , 郝郑平 . 不同晶型纳米TiO2的溶剂热合成及其光催化活性研究[J]. 无机材料学报, 2007 , 22(5) : 931 -936 . DOI: 10.3724/SP.J.1077.2007.00931

Abstract

Nanosized titania particles consisting of anatase, rutile and brookite phases were synthesized under solvothermal conditions with different alcohols as solvents, hexamethylene tetramine (HMT) as precipitant as well as precursor of titanium trichloride. XRD, TEM, UV-Vis and XPS spectra were employed to characterize these samples. The effect of treatment solvent and HMT amount on the phase composition and photocatalytic activity of titania were investigated. It is found that anatase is easier to form at acidic condition, but rutile and brookite at basic condition, using methanol as solvent. The TiO2-xNx with nitrogen doping in TiO2 is obtained under solvothermal conditions. The results of photocatalytic degradation to methyl orange show that the mixed crystallite of anatase and brookite has the best photocatalytic activity.

参考文献

[1] Bokhimi X, Morales A, Aguilar M, et al. Int. J. Hydrogen Ener., 2001, 26 (12): 1279--1287.
[2] Zheng Y, Shi E, Cui S, et al. J. Am. Ceram. Soc., 2000, 83 (10): 2634--2636.
[3] Kominami H, Kohno M, Kera Y. J. Mater. Chem., 2000, 10 (5): 1151--1156.
[4] 冉凡勇, 曹文斌, 李艳红, 等(RAN Fan-Yong, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (3): 553--557.
[5] Yang J, Huang Y X, Ferreira J M. J. Mater. Sci. Lett., 1997, 16 (23): 1933--1935.
[6] 王志义, 崔作林(WANG Zhi-Yi, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (1): 46--52.
[7] Yang J, Ferreira J M. Mater. Res. Bull., 1998, 33 (3): 389--394.
[8] Luo H M, Wang C, Yan Y S. Chem. Mater., 2003, 15 (20): 3841--3846.
[9] Wang C, Deng Z, Zhang G, et al. Powder Technol., 2002, 125 (1): 39--44.
[10] Yin S, Ihara K, Aita Y, et al. J. Photochem. Photobio. A, 2006, 179 (1-2): 105--114.
[11] Hosono E, Fujihara S, Kakiuchi K, et al. J. Am. Chem. Soc., 2004, 126 (8): 7790--7791.
[12] Sato T, Aita Y, Komatsu M, et al. J. Mater. Sci., 2006, 41 (5): 1433--1438.
[13] Yu J C, Yu J, Ho W, et al. Chem. Commun., 2001, 1 (19): 1942--1943.
[14] Ohno T, Tokieda K, Higashida S, et al. Appl. Catal. A, 2003, 244 (2): 383--391.
[15] 姚 超, 杨 光, 林西平, 等. 无机化学学报, 2005, 21 (12): 1821--1826.
[16] Kominami H, Ishii Y, Kohno M, et al. Catal. Lett., 2003, 91 (1-2): 41--47.
[17] Li J G, Tang C, Li D, et al. J. Am. Ceram. Soc., 2004, 87 (7): 1358--1361.
[18] Burda C, Lou Y, Chen X, et al. Nano Lett., 2003, 3 (8): 1049--1051.
[19] Irie H, Wanatabe Y, Hashimoto K. J. Phys. Chem. B, 2003, 107 (23): 5483--5486.
[20] Asahi R, Morikawa T, Ohwaki T, et al. Science, 2001, 293 (5528): 269--271.
文章导航

/