研究论文

SrNb2O6/Nb2O5复合物光催化降解甲基橙的研究

  • 邢精成 ,
  • 卞建江 ,
  • 杨建华 ,
  • 黄富强
展开
  • (1. 中国科学院上海硅酸盐研究所高性能陶瓷和超微结构国家重点实验室, 上海 200050; 2. 上海大学材料科学与工程学院, 上海 200072)

收稿日期: 2006-09-06

  修回日期: 2006-10-26

  网络出版日期: 2007-09-20

Photocatalytic Degradation of Methyl Orange via SrNb2O6 and SrNb2O6/Nb2O5 Composite

  • XING Jing-Cheng1 ,
  • BIAN Jian-Jiang ,
  • YANG Jian-Hua ,
  • HUANG Fu-Qiang
Expand
  • (1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. Department of Material Science and Technology, Shanghai University, Shanghai 200072, China.)

Received date: 2006-09-06

  Revised date: 2006-10-26

  Online published: 2007-09-20

摘要

光催化剂SrNb2O6采用传统固相反应分别在合成温度为950℃(低温)和1400℃(高温)进行制备. 通过XRD粉末衍射和UV-Vis吸收光谱分析, 表征
了样品的物相和光谱吸收特性. 通过对高低温样品的测试和分析表明, 高温样品具有单一的物相, 而低温样品反应并不完全, 是一个混合物. 在SrNb2O6光催化活性研究中, 常用的甲基橙被选作染料光降解模型, 对比试验表明低温样品的光催化活性远高于纯相样品SrNb2O6或Nb2O5. 经过讨论和分析, 推断出低温产物中存在的异质结(SrNb2O6/Nb2O5)是提高光催化性能的根本原因.

本文引用格式

邢精成 , 卞建江 , 杨建华 , 黄富强 . SrNb2O6/Nb2O5复合物光催化降解甲基橙的研究[J]. 无机材料学报, 2007 , 22(5) : 927 -930 . DOI: 10.3724/SP.J.1077.2007.00927

Abstract

SrNb2O6 powders were prepared by a conventional solid-state method and characterized by X-ray powder diffraction and UV-Vis diffuse reflection spectra. Their photocatalytic activities were investigated on the degradation of methyl orange. The results show that the photocatalytic activity of pure phase SrNb2O6 calcined at 1400℃ is lower than that of the impure
phase SrNb2O6 calcined at 950℃. The heterojunction model is used to explain that the impure sample can improve the photocatalytic activity due to the interface interaction of Nb2O5 and SrNb2O6.

参考文献

[1] Fujishima A,Honda K. Nature, 1972, 238 (5358): 37--38.
[2] Yao Wei Feng, Xu Xiao Hong, Wang Hong, et al. Appl. Catal. B, 2004, 52 (2): 109--116.
[3] Wang Junhu, Toru Nonami. J. Mater. Sci., 2004, 39 (20): 6367--6370.
[4] Satoshi Horikoshi, Aiko Saitou, Hisao Hidaka. Environ. Sci. Technol., 2003, 37 (24): 5813--5822.
[5] Lin Xinping, Huang Fuqiang, Wang Wendeng, et al. Appl. Catal. A, 2006, 313 (2): 218--223
[6] Hwang D W, Kim H G, Kim J, et al. J. Catal., 2000, 193 (1-2): 40--48.
[7] Kudo A, Tanaka A, Domen K, et al. J. Catal., 1988, 111 (1): 67--76.
[8] Ye Jinhua, Zou Zhigang, Akiyuki Matsushita. Int. J. Hydrogen Energ., 2003, 28 (6): 651--655.
[9] Zou Zhigang, Ye Jinhua, Hironori Arakawa. J. Mol. Catal. A, 2001, 168 (1-2): 289--297.
[10] Zou Zhigang, Ye Jinhua, Kazuhiro Sayama, et al. Chem. Phys. Lett., 2001, 343 (3-4): 303--308.
[11] Lorena L Garza-Tovar, Leticia M Torres-Martínez, D Bernal Rodr1guez, et al. J. Mol. Catal. A, 2006, 247 (1-2): 283--290.
[12] Chen Shifu, Chen Lei, Gao Shen, et al. Mater. Chem. Phys., 2006, 98 (1): 116--120.
[13] Young Tae Kwon, Kang Yong Song, Wan In Lee, et al. J. Catal., 2000, 191 (1): 192--199.
[14] 孔令丽, 钟顺和(KONG Ling-Li, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (5): 1023--1028.
[15] 赵 春, 钟顺和(ZHAO Chun, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (4): 965--971.
[16] Shahed U M Khan, Mofareh Al-Shahry, William B. Inger. Science, 2002, 297 (27): 2243--2245.
[17] Papp J, Soled S, Dwight K. Chem. Mater., 1994, 6 (4): 496--500.
[18] Chen Shifu, Chen Lei, Gao Shen, et al. Mater. Chem. Phys., 2006, 98 (1): 116--120.
[19] Young Tae Kwon, Kang Yong Song, Wan In Lee, et al. J. Catal., 2000, 191 (1): 218--224.
[20] Bessekhouad Y, Robert D, Weber J-V. Catal. Today., 2005, 101 (3-4): 315--321.
[21] Bessekhouad Y, Robert D, Weber J-V. J. Photoch. photobio. A, 2004, 163 (3): 569--580.
[22] Chouhaid Nasr, Surat Hotchandani, Kim Won Y, et al. J. Phys. Chem. B, 1997, 101 (38): 7480--7487.
[23] Aaron Dodd, Allan McKinley, Martin Saunders, et al. Nanotechnology, 2006, 17 (3): 692--698.
[24] Bandara J, Tennakone K, Jayatilaka P P B. Chemosphere, 2002, 49 (4): 439--445.
[25] Nethercot A H. Phys. Rev. Lett., 1974, 33 (18): 1088--1091.
文章导航

/