研究论文

籽晶辅助化学气相传输法生长ZnO单晶的特征研究

  • 张华伟 ,
  • 施尔畏 ,
  • 陈之战 ,
  • 严成锋 ,
  • 陈博源
展开
  • (1. 中国科学院上海硅酸盐研究所, 上海 200050; 2. 中国科学院研究生院, 北京, 100049)
    (1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China)

收稿日期: 2006-09-27

  修回日期: 2006-12-27

  网络出版日期: 2007-09-20

Characteristics of ZnO Single Crystal Grown by Seeded Chemical Chemical Vapor Transport Method

  • ZHANG Hua-Wei ,
  • SHI Er-Wei ,
  • CHEN Zhi-Zhan ,
  • YAN Cheng-Feng ,
  • CHEN Bo-Yuan
Expand
  • (1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China)

Received date: 2006-09-27

  Revised date: 2006-12-27

  Online published: 2007-09-20

摘要

采用籽晶辅助化学气相传输法生长得到φ32mm ZnO单晶体. X射线衍射表明晶体沿c轴方向生长, 结晶质量较好: 中心部位摇摆曲线半高宽47arcsec, 边缘部分为78.4arcsec. 利用Raman谱、光致发光谱等研究了ZnO晶体退火前后的缺陷和光学性质, 表明经氧气氛退火后晶体缺陷明显减少, 晶体质量进一步提高.

本文引用格式

张华伟 , 施尔畏 , 陈之战 , 严成锋 , 陈博源 . 籽晶辅助化学气相传输法生长ZnO单晶的特征研究[J]. 无机材料学报, 2007 , 22(5) : 907 -910 . DOI: 10.3724/SP.J.1077.2007.00907

Abstract

ZnO single crystal with a diameter of 32mm, was grown by a seeded chemical vapor transport method. X-ray diffraction technique was used to evaluate the crystalline quality. The structure defects and optic properties of as-grown and annealed ZnO crystals were compared by Raman and photoluminescence measures. It is found that the growth direction is along c-axis and FWHM is 47arcsec and 78.4arcsec in the centre and at the edge of the crystal, respectively. Quality of the crystal is improved after annealing in oxygen ambience.

参考文献

[1] Robert F. Science, 1997, 276: 895--896.
[2] Tsukazaki A, Ohtomo A, Onuma T, et al. Nature Material, 2005, 4: 42--46.
[3] Nause J, Nemeth B. Semicond. Sci. Technol., 2005, 20: S45--S48.
[4] Ohshimaa E, Oginoa H, Niikura I, et al. J. Crys. Grow., 2004, 260: 166--170.
[5] Maeda K, Sato M, Niikura I. Semicond. Sci. Technol., 2005, 20: S49--S54.
[6] Hassani S, Tromson-Carij A, Lusson A, et al. Phys. Stat. Sol. (b), 2002, 229: 835--839.
[7] Grasza K, Mcelelskl A. Phys. Stat. Sol. (c), 2005, 2: 1115--1118.
[8] Look D C, Reynolds D C, Sizelove J R, et al. Solid State Communication, 1998, 105: 399--401.
[9] Li Xin-Hua, Xu Jia-Yue, Li Xiao-Min. Applied Physics A, 2005, 82: 373--376.
[10] Zhao Y, Dong Z, Wei X, et al. Chinese Journal of Semiconductors, 2006, 27: 336--339.
[11] Song C, Hang Y, Zhang C, XU J, et al. Journal of Synthetic Crystals, 2005, 34: 1083--1087.
[12] Tena-Zaera R, Mart\acute inez-Tom\acute as M C, Hassani S, et al. J. Crys. Growth, 2004, 270: 711--721.
[13] Fujimura N, Nishihara T, Goto S, et al. J. Cryst. Growth, 1993, 130: 269--272.
[14] Fan H J, Scholz R, Kolb M F, et al. Appl. Phys. A, 2004, 79: 1895--1900.
[15] Yang L W, Wu X L, Huang G S, et al. J. Appl. Phys., 2005, 97: 014308.
[16] Ozgǖr U, Alivov Y I, Liu C, et al. J. Appl. Phys., 2005, 98: 041301.
[17] Mo C M, Li Y H, Lin Y S, et al. J. Appl. Phys., 1998, 83: 4389--4391.
[18] Lin G, Yang S H, Yang C L, et al. Appl. Phys. Lett., 2000, 76: 2901--2903.
[19] 高相东, 李效民, 于伟东(Gao Xiang-Dong, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (4): 965--970.
[20] Vanheusden K, Seager C H, Warren W L, et al. J. Appl. Phys., 1996, 79: 7983--7990.
[21] Van Dijken A, Meulenkamp E A, Vanmaekelbergh D, et al. J. Phys. Chem. B, 2000, 104: 1715--1723.
[22] Kroger F A. The Chemistry of Imperfect Crystals. Amsterdam: North-Holland Publishing Company, 1964. 691.
[23] Studenikin S A, Golego N, Cocivra M. J. Appl. Phys., 1998, 84: 2287--2294.
[24] Minamit, Nanto H, Takata S. Thin Solid Films, 1983, 109: 379--384.
文章导航

/