研究论文

电极活性材料Li4Ti5O12的制备及其主要影响因素

  • 许江枫 ,
  • 李建玲 ,
  • 李文生 ,
  • 王新东
展开
  • 1. 北京科技大学理化系, 北京 100083; 2. 锦州凯美能源有限公司, 锦州 121000, 3. 北京市新能源材料与技术重点实验室, 北京 100083

收稿日期: 2006-09-28

  修回日期: 2006-11-23

  网络出版日期: 2007-09-20

Preparation and Key Influencing Factors of Li4Ti5O12 as Electrode Material

  • XU Jiang-Feng ,
  • LI Jian-Ling ,
  • LI Wen-Sheng ,
  • WANG Xin-Dong
Expand
  • 1. Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; 2. Jinzhou Kaimei Power Co. Ltd., Jinzhou 121000, China; 3. Beijing Key Lab of Advanced Energy Material and Technology, Beijing 100083, China

Received date: 2006-09-28

  Revised date: 2006-11-23

  Online published: 2007-09-20

摘要

在正交试验的基础上考察了烧结温度及时间、锂源对固相合成Li4Ti5O12性能的影响. 结果表明, 烧结温度为最显著影响因素; 恰当的温度与时间组合可以制备粒径小、结晶度好的产物, 具有良好的电化学性能; 硝酸锂为锂源制备的Li4Ti5O12具有较好的高倍率充放电能力. 以LiNO3为锂源, 空气气氛下800℃烧结12h, 所得Li4Ti5O12在大电流密度下充放电性能良好, 1C、2C、5C时的放电容量分别达到了151、140、115mAh·g-1, 且具有良好的可逆性.

本文引用格式

许江枫 , 李建玲 , 李文生 , 王新东 . 电极活性材料Li4Ti5O12的制备及其主要影响因素[J]. 无机材料学报, 2007 , 22(5) : 879 -884 . DOI: 10.3724/SP.J.1077.2007.00879

Abstract

Effects of sintering temperature, time and the lithium salts on the properties of Li4Ti5O12 synthesized by a solid-state-method were studied based on orthogonal experiments. The results show that sintering temperature is the most principal factor on the performance of Li4Ti5O12. Synthesized at proper sintering temperature with appropriate time, the product will have good electrochemical properties with finer particle size and better crystallinity. The high-rate discharge/charge property of Li4Ti5O12 prepared with LiNO3 is much better. Li4Ti5O12 obgained at the optimum condition, namely preparing with LiNO3 and sintering at 800℃ for 12h, performs well when charged and discharged with high current density. It delivers discharge capacities of 151mAh·g-1, 140mAh·g-1 and 115mAh·g-1 at the rate of 1C, 2C and 5C, respectively, and shows good reversibility.

参考文献

[1] Ohzuku T, Ueda A, Yamamoto N. J. Electrochem. Soc., 1995, 142 (5): 1431--1435.
[2] Panero S, Satolli D, Salomon M, et al. Electrochem. Commun., 2000, 2: 810--813.
[3] Ferg E, Gummow R J, de Kock A. J. Electrochem. Soc., 1994, 141 (11): L147--L150.
[4] Zaghib K, Simoneau M, Armand M, et al. J. Power Sources, 1999, 81-82: 300--305.
[5] Wang G X, Bradhurst D H, Dou S X, et al. J. Power Sources, 1999, 83: 156--161.
[6] Bach S, Pereira-Ramos J P, Baffier N. J. Power Sources, 1999, 81-82: 273--276.
[7] Jansen A N, Kahaian A J, Kepler K D, et al. J. Power Sources, 1999, 81-82: 902--905.
[8] Amaucci G G, Badway F, Pasquier A Du, et al. J. Electrochem. Soc., 2001, 148 (8): A930--A939.
[9] Pasquier A Du, Plitz I, Gural J, et al. J. Power Sources, 2003, 113: 62--71.
[10] Harrison M R, Edwards P P, Goodenough J B. Philos. Mag. B, 1985, 52: 679--699.
[11] Colbow K M, Dahn J R, Haering R R. J. Power Sources, 1989, 26: 397--402.
[12] 高玲, 仇卫华, 赵海雷. 北京科技大学学报, 2005, 27 (1): 82--85.
[13] Chen C, Spears M, Wondre F, et al. J. Crystal Growth, 2003, 250: 139--145.
[14] 杨建文, 钟 晖, 钟海云, 等. 过程工程学报, 2005, 5 (2): 170--174.
[15] Kavan L, Kratochvilov\acuteaK, Gratzel M. J. Electroanal. Chem., 1995, 394: 93--102.
[16] Kavan L, Fattakhova D, Krtil P. J. Electrochem. Soc., 1999, 146: 1375--1379.
文章导航

/