研究论文

不同晶型 CdSe纳米棒的制备及光电性能研究

  • 郝彦忠 ,
  • 殷志刚
展开
  • 1. 河北科技大学理学院, 石家庄 050018; 2, 河北科技大学化学与制药工程学院, 石家庄 050018

收稿日期: 2006-06-30

  修回日期: 2006-09-15

  网络出版日期: 2007-05-20

Preparation and Photoelectrochemical Study of CdSe Nanorods with Different Structure Phases

  • HAO Yan-Zhong ,
  • YIN Zhi-Gang
Expand
  • 1. College of Sciences,Hebei University of Science and Technology, Shijiazhuang 050018, China; 2. College of Chemical \& Pharmaceutical Engineering, Shijiazhuang 050018, China

Received date: 2006-06-30

  Revised date: 2006-09-15

  Online published: 2007-05-20

摘要

采用水热法制备了不同晶型CdSe纳米棒, 并用TEM、SEM、XRD、TGA-DTA对其进行了表征. 结果显示反应温度为240℃生成纤锌矿型CdSe纳米棒, 反应温度为200℃生成闪锌矿型CdSe纳米棒. 并对纳米棒进行了光电性能测定, 纤锌矿型CdSe纳米棒膜电极的光电转换效率(IPCE)优于闪锌矿型CdSe纳米棒膜电极的IPCE. CdSe/PMeT复合膜电极在具有最大光电转换效率时的波长发生了红移.

本文引用格式

郝彦忠 , 殷志刚 . 不同晶型 CdSe纳米棒的制备及光电性能研究[J]. 无机材料学报, 2007 , 22(3) : 413 -417 . DOI: 10.3724/SP.J.1077.2007.00413

Abstract

CdSe nanorods with different structure phases were prepared by a hydrothermal method, and the products were characterized with TEM, SEM, XRD, TGA-DTA. The results show that the CdSe nanorod with zinc blende structure is formed at 200℃ reaction temperature. At 240℃ reaction temperature, the wurtzite structure CdSe nanorod can be obtained.The IPCE of the wurtzite structure CdSe nanorod film electrode is higher than that of zinc blende structure CdSe nanorod film electrode. The wavelength with the max IPCE value for the CdSe/PMeT composite film electrode appears as red shift.

参考文献

[1] 聂秋林, 袁求理, 徐铸德(NIE Qiu-Lin, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19 (6): 1411--1414.
[2] 赵启涛, 候利松, 黄瑞安, 等(ZHAO Qi-Tao, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19 (3): 477--480.
[3] 曹广胜, 俞庆森, 董喜贵,等(CAO Guang-Sheng, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (4): 815--820.
[4] 张俊松, 马娟, 陈秀梅,等. 南京师大学报, 2004, 27 (2): 61--62.
[5] Li Y D, Liao H W, Ding Y, et al. J. Chem. Mater., 1998, 10 (9): 2301--2303.
[6] Wang W Z, Geng Y, Yan P, et al. Inorgnic Chemistry Communications 2, 1999. 83--85.
[7] Yu S H, Wu Y S, Yang J, et al. J. Chem. Mater., 1998, 10: 2309--2312.
[8] Xu D S, Shi X S. J. Phys. Chem., 2000, 104 (21): 5061--5063.
[9] Trindade T,O’ Brien P, et al. J. Mater. Chem., 1996, 6 (3): 343-346; Adv. Mater., 1996, 8 (2): 161--163.
[10] Huynh W U, Peng X G, Alivisatos A P. Adv. Mater., 1999, (11): 923-927.
[11] Huynh W U, Pittmer J J, Trclemariam D J, et al. Phys. Rev., 2003, 67 (11): 115326--115331.
[12] Manna L, Milliron D J, Meisel A. Nat. Mater., 2003, 2: 382--386.
[13] Peng Q, Dong Y J, Deng Z X, et al. Inorg. Chem., 2002, 41 (20): 5249--5254.
[14] 李东升, 吕功煊. 高等学校化学学报, 2002, 23 (4): 685--689.
[15] Liu J S, Tanaka T, Sivula K, et al. J. Am. Chem. Soc., 2004, 126: 6550--6551.
[16] 郝彦忠, 蔡春立. 物理化学学报, 2005, 21 (12): 1395--1398.
[17] Snaith H J, Whiting G L, Sun B, et al. Nano Letters, 2005, 5 (9): 1653--1657.
[18] 郝彦忠, 武文俊. 化学学报, 2005, 63 (3): 215--218.
[19] 武文俊, 郝彦忠. 感光科学与光化学, 2004, 22 (5): 378--382.
文章导航

/