无机材料学报 ›› 2026, Vol. 41 ›› Issue (1): 129-136.DOI: 10.15541/jim20250064 CSTR: 32189.14.10.15541/jim20250064
• 研究快报 • 上一篇
王斯婷1(
), 孙梓雄1(
), 刘鑫莹1, 韩沛桥1, 汪秀丽2, 张素风3
收稿日期:2025-02-18
修回日期:2025-04-28
出版日期:2026-01-20
网络出版日期:2025-06-05
通讯作者:
孙梓雄, 副教授. E-mail: sunzx@sust.edu.cn作者简介:王斯婷(1999-), 女, 硕士研究生. E-mail: wst11902023@163.com
WANG Siting1(
), SUN Zixiong1(
), LIU Xinying1, HAN Peiqiao1, WANG Xiuli2, ZHANG Sufeng3
Received:2025-02-18
Revised:2025-04-28
Published:2026-01-20
Online:2025-06-05
Contact:
SUN Zixiong, associate professor. E-mail: sunzx@sust.edu.cnAbout author:WANG Siting (1999-), female, Master candidate. E-mail: wst11902023@163.com
Supported by:摘要: 高性能柔性压电纳米发电机(Piezoelectric nanogenerator, PENG)的发展对自供能传感和微电子器件的应用具有重要意义。本研究采用氢键替换策略, 制备了基于纤维素/聚偏二氟乙烯(PVDF)共混薄膜的多层PENG, 并引入多相BCZT(0.1BaZr0.2Ti0.8O3-0.9Ba0.7Ca0.3TiO3)陶瓷填料以优化其性能。SEM和TEM表征结果表明, 复杂的氢键网络有效促进陶瓷填料在复合薄膜亚层中分散均匀。为探究填料分布对PENG性能的影响, 本研究制备并对比了单层与双层复合薄膜结构。结果表明, 双层PENG的电学输出性能显著优于单层结构, 其中D-L3H7构型的开路电压(Open circuit voltage, VOC)达23.13 V, 短路电流(Short circuit current, ISC)达8.32 μA。这一性能提升归因于增大的层间界面有效抑制了电荷注入与迁移, 从而提高了电荷密度。此外, 具有尖锐顶角的六方/四方相陶瓷纳米颗粒进一步诱导了局部电场增强效应, 优化了器件的压电转换性能。
中图分类号:
王斯婷, 孙梓雄, 刘鑫莹, 韩沛桥, 汪秀丽, 张素风. 通过双相BCZT掺杂策略实现纸基压电纳米发电机的高功率密度[J]. 无机材料学报, 2026, 41(1): 129-136.
WANG Siting, SUN Zixiong, LIU Xinying, HAN Peiqiao, WANG Xiuli, ZHANG Sufeng. Achieving High Power Density in Paper-based Piezoelectric Nanogenerators through Dual-phase BCZT Doping Strategy[J]. Journal of Inorganic Materials, 2026, 41(1): 129-136.
Fig. 1 XRD patterns and FT-IR spectra of the two-phase powders, as well as the physical pictures of the sample films (a, b) XRD refined patterns of (a1) T-phase BCZT (tetragonal-phase) and (a2) C-phase (cubic-phase) BCZT; (b) FT-IR spectra of all films;(c1-c4) Real photos of (c1) S-L3H7, (c2) S-L5H5, (c3) D-L3H7, and (c4) D-L5H5
Fig. 2 Performance tests of PENGs with different configurations (a1) VOC and (a2) ISC of PENGs fabricated based on different single-layer composite films at 20 N/3 Hz; (b1) VOC and (b2) ISC of PENGs fabricated based on different double-layer composite films at 20 N/3 Hz. Colorful figures are available on website
Fig. 3 Monitoring of various human motions in real-time Output voltage as function of time for a typical D-L3H7 PENG at (a1) different finger joint bending (30°, 60°, and 90°) motions, (a2) different wrist joint bending (30°, 60°, and 90°) motions, (a3) different elbow joint bending (30°, 60°, and 90°) motions,and (a4) walk, run, and skip deformations
Fig. S1 Schematic diagrams of composite films with different structures (a1-a5) Schematic diagrams of double-layer composite films; (b1-b3) Schematic diagrams of single-layer composite films
Fig. S2 Morphological structure of the BCZT@cellulose/PVDF composite film (a1) SEM image of the general area of the D-L3H7 film; (a2-a6) EDS images of C, O, F, Ti, and Zr in Fig. (a1); (b1) TEM image of the general area of the D-L3H7 film; (b2-b7) EDS images of Ba, F, O, C, Ti, and Ca in Fig. (b1)
Fig. S3 Electrical performance tests of PENGs with different configurations (a1, a2) Frequency dependence of ε and tanσ of (a1) all single-layered films and (a2) all double-layered films; (b1, b2) Temperature dependence of ε and tanσ of (b1) S-H and (b2) D-L3H7; (c1, c2) P-E loops of (c1) all single-layered films and (c2) all double-layered films
Fig. S4 Water contact and mechanical property of different thin films (a1-a5) Water contact angles for single-layer filmss; (b1-b3) Water contact angles for double-layer films; (c) Stress-strain curves and (d) corresponding Young's modulus
| Single-layer-structured PENG (number) | BCZT-L : BCZT-H | VOC/V | ISC/μA | PD/(μW·cm-2) |
|---|---|---|---|---|
| S-H | 0 : 1 | 19.31 | 4.42 | 11.33 |
| S-L3H7 | 3 : 7 | 15.63 | 3.17 | 6.58 |
| S-L5H5 | 5 : 5 | 12.55 | 2.25 | 3.82 |
| S-L7H3 | 7 : 3 | 7.52 | 1.18 | 1.17 |
| S-L | 1 : 0 | 5.23 | 0.88 | 0.57 |
Table S1 Serial number and performance of single-layer PENG
| Single-layer-structured PENG (number) | BCZT-L : BCZT-H | VOC/V | ISC/μA | PD/(μW·cm-2) |
|---|---|---|---|---|
| S-H | 0 : 1 | 19.31 | 4.42 | 11.33 |
| S-L3H7 | 3 : 7 | 15.63 | 3.17 | 6.58 |
| S-L5H5 | 5 : 5 | 12.55 | 2.25 | 3.82 |
| S-L7H3 | 7 : 3 | 7.52 | 1.18 | 1.17 |
| S-L | 1 : 0 | 5.23 | 0.88 | 0.57 |
| Double-layer-structured PENG (number) | BCZT-L : BCZT-H | VOC/V | ISC/μA | PD/(μW·cm-2) |
|---|---|---|---|---|
| D-L3H7 | 3 : 7 | 23.13 | 8.32 | 26.06 |
| D-L5H5 | 5 : 5 | 17.53 | 6.71 | 14.45 |
| D-L7H3 | 1 : 0 | 6.20 | 1.85 | 1.57 |
Table S2 Serial number and performance of double-layer PENG
| Double-layer-structured PENG (number) | BCZT-L : BCZT-H | VOC/V | ISC/μA | PD/(μW·cm-2) |
|---|---|---|---|---|
| D-L3H7 | 3 : 7 | 23.13 | 8.32 | 26.06 |
| D-L5H5 | 5 : 5 | 17.53 | 6.71 | 14.45 |
| D-L7H3 | 1 : 0 | 6.20 | 1.85 | 1.57 |
| [1] |
HAN J, WANG M, ZHAO T, et al. Triboelectric nanogenerator based on graphene forest electrodes. Journal of Inorganic Materials, 2019, 34(8): 839.
DOI URL |
| [2] |
ZHOU X, Li C, WU D, et al. Recent advances of cellular stimulation with triboelectric nanogenerators. Exploration, 2023, 3(4): 20220090.
DOI URL |
| [3] |
ANNAMALAI P K, NANJUNDAN A K, DUBAL D P, et al. An overview of cellulose‐based nanogenerators. Advanced Materials Technologies, 2021, 6(3): 2001164.
DOI URL |
| [4] |
ZHANG Y, GAO X, WU Y, et al. Self-powered technology based on nanogenerators for biomedical applications. Exploration, 2023, 1(1): 90.
DOI URL |
| [5] |
GUO Y, CHEN Z, WANG H, et al. Progress of inorganic filler based composite films for triboelectric nanogenerators. Journal of Inorganic Materials, 2021, 36(9): 919.
DOI |
| [6] |
WABG B, WEI X, ZHOU H, et al. Viscoelastic blood coagulation testing system enabled by a non-contact triboelectric angle sensor. Exploration, 2023, 4(1): 20230073
DOI URL |
| [7] |
CHEN Y, GAO Z, ZHANG F, et al. Recent progress in self-powered multifunctional e-skin for advanced applications. Exploration, 2022, 2(1): 20210112.
DOI URL |
| [8] |
RAM F, GUDADHE A, VIJAYAKANTH T, et al. Nanocellulose reinforced flexible composite nanogenerators with enhanced vibrational energy harvesting and sensing properties. ACS Applied Polymer Materials, 2020, 2(7): 2550.
DOI URL |
| [9] |
WANG X, ZHU Y, PENG Z, et al. Phase structure and piezoelectric property of (Ba0.85Ca0.15)(Ti0.9Zr0.1-xSnx)O3 lead-free piezoceramics. Journal of Inorganic Materials, 2022, 37(5): 513.
DOI URL |
| [10] |
NAN B, ZANG J, LU W L, et al. Recent progress on additive manufacturing of piezoelectric ceramics. Journal of Inorganic Materials, 2022, 37(6): 585.
DOI |
| [11] |
VULLERS R J M, VAN SCHAIJK R, DOMS I, et al. Micropower energy harvesting. Solid-State Electronics, 2009, 53(7): 684.
DOI URL |
| [12] | MARZENCKI M, AMMAR Y, BASROUR S. Integrated power harvesting system including a MEMS generator and a power management circuit. Sensors and Actuators A: Physical, 2008, 145: 363. |
| [13] | YUAN X, GAO X, YANG J, et al. The large piezoelectricity and high power density of a 3D-printed multilayer copolymer in a rugby ball-structured mechanical energy harvester. Energy & Environmental Science, 2020, 13(1): 152. |
| [14] |
HUANG A, ZHU Y, PENG S, et al. Improved energy harvesting ability of single-layer binary fiber nanocomposite membrane for multifunctional wearable hybrid piezoelectric and triboelectric nanogenerator and self-powered sensors. ACS Nano, 2023, 18(1): 691.
DOI URL |
| [15] | RANA M M, KHAN A A, HUANG G, et al. Porosity modulated high-performance piezoelectric nanogenerator based on organic/ inorganic nanomaterials for self-powered structural health monitoring. ACS Applied Materials & Interfaces, 2020, 12(42): 47503. |
| [16] |
BAGHALI M, JAYATHILAKA W, RANAKRISHNA S. The role of electrospun nanomaterials in the future of energy and environment. Materials, 2021, 14(3): 558.
DOI URL |
| [17] |
LU L, DING W, LIU J, et al. Flexible PVDF based piezoelectric nanogenerators. Nano Energy, 2020, 78: 105251.
DOI URL |
| [18] | LUO X, WANG Z, YAN M, et al. One-pot three-step synthesis of PDMAEMA-b-PMMA-b-PNIPAM triblock block copolymer for preparing pH and thermal dual-responsive PVDF blend membranes. Polymer Engineering and Science, 2023, 63(10): 3343. |
| [19] |
YANG X R, WANG R Y, WANG H J, et al. A robust-switchable poly(vinyl alcohol) gel with adjustable multiple hydrogen bonding interactions. European Polymer Journal, 2023, 195: 112192.
DOI URL |
| [20] |
SONG Y, SHI Z, HU G H, et al. Recent advances in cellulose- based piezoelectric and triboelectric nanogenerators for energy harvesting: a review. Journal of Materials Chemistry A, 2021, 9(4): 1910.
DOI URL |
| [21] | CAUDA V, STASS S, BEJTKA K, et al. Nanoconfinement: an effective way to enhance PVDF piezoelectric properties. ACS Applied Materials & Interfaces, 2013, 5(13): 6430. |
| [22] |
DALLAEV R, PISARENKO T, SOBOLA D, et al. Brief review of PVDF properties and applications potential. Polymers, 2022, 14(22): 4793.
DOI URL |
| [23] |
WEI S, WANG X, ZHAO X, et al. Detection of pesticide residues on flexible and transparent fluorinated polyimide film based on surface-enhanced Raman spectroscopy technology. Analytica, Chimica Acta, 2023, 1283: 341958.
DOI URL |
| [24] |
HU R, ZHAO J, ZHU G, et al. Fabrication of flexible free-standing reduced graphene oxide/polyaniline nanocomposite film for all-solid-state flexible supercapacitor. Electrochimica Acta, 2018, 261: 151.
DOI URL |
| [25] |
LI C, XU S, YU J, et al. 3D hybrid MoS2/AgNPs/inverted pyramid PMMA resonant cavity system for the excellent flexible surface enhanced Raman scattering sensor. Sensors and Actuators B-Chemical, 2018, 274: 152.
DOI URL |
| [26] |
MAGDY G, HASSANIN A H, KANDAS I, et al. PVDF nanostructures characterizations and techniques for enhanced piezoelectric response: a review. Materials Chemistry and Physics, 2024, 325: 129760.
DOI URL |
| [27] |
HE Z, RAULT F, LEWANDOWSKI M, et al. Electrospun PVDF nanofibers for piezoelectric applications: a review of the influence of electrospinning parameters on the β phase and crystallinity enhancement. Polymers, 2021, 13(2): 174.
DOI URL |
| [28] |
LI Y, HU Q, ZHANG R, et al. Piezoelectric nanogenerator based on electrospinning PVDF/cellulose acetate composite membranes for energy harvesting. Materials, 2022, 15(19): 7026.
DOI URL |
| [29] |
VENKATESAN M, CHEN W C, CHO C J, et al. Enhanced piezoelectric and photocatalytic performance of flexible energy harvester based on CsZn0.75Pb0.25I3/CNC-PVDF composite nanofibers. Chemical Engineering Journal, 2022, 433: 133620.
DOI URL |
| [30] | CHENG Y, FENG Y, PAN Z, et al. Multilayer nanocomposites with ultralow loadingsof nanofillers exhibiting superb capacitive energy storage performance. Energy & Environmental Science, 2023, 16(12): 5881. |
| [31] |
HU P, YAN L, ZHAO C, et al. Double-layer structured PVDF nanocomposite film designed for flexible nanogenerator exhibiting enhanced piezoelectric output and mechanical property. Composites Science and Technology, 2018, 168: 327.
DOI URL |
| [32] |
SUN Z, XIN H, DIWU L, et al. Boosting the energy storage performance of BCZT-based capacitors by constructing a Schottky contact. Materials Horizons, 2025, 12(7): 2328.
DOI PMID |
| [33] |
SUN Z, BAI Y, JING H, et al. A polarization double-enhancement strategy to achieve super low energy consumption with ultra-high energy storage capacity in BCZT-based relaxor ferroelectrics. Materials Horizons, 2024, 11(14): 3330.
DOI URL |
| [34] |
SUN Z, ZHAO S, WANG T, et al. Achieving high overall energy storage performance of KNN-based transparent ceramics by ingenious multiscale designing. Journal of Materials Chemistry A, 2025, 12(27): 16735.
DOI URL |
| [35] |
SUN Z, WANG Z, TIAN Y, et al. Progress, outlook, and challenges in lead-free energy-storage ferroelectrics. Advanced Electronic Materials, 2020, 6(1): 1900698.
DOI URL |
| [36] |
SUN Z, BAI Y, LIU J, et al. Interface engineering in ferroelectrics: from films to bulks. Journal of Alloys and Compounds, 2022, 909: 164735.
DOI URL |
| [37] |
JI X, WANG C, HARUMOTO T, et al. Structure and electrical properties of BCZT ceramics derived from microwave-assisted Sol-Gel-hydrothermal synthesized powders. Scientific Reports, 2020, 10(1): 20352.
DOI PMID |
| [38] |
CHUKHCHIN D G, MALKOV A V, TYSHUNOVA I V, et al. Diffractometric method for determining the degree of crystallinity of materials. Crystallography Reports, 2016, 61(3): 371.
DOI URL |
| [39] |
DANG S T, XUE L L, HE L F, et al. Dielectric and energy storage properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics with different aging temperature during the Sol-Gel process. Journal of Materials Science: Materials in Electronics, 2022, 33(35): 26100.
DOI |
| [40] |
KOU Q, YANG B, SUN Y, et al. Tetragonal (Ba, Ca)(Zr, Ti)O3 textured ceramics with enhanced piezoelectric response and superior temperature stability. Journal of Materiomics, 2022, 8(2): 366.
DOI URL |
| [41] |
CHAKKCHAOUI N, FARHAN R, BOUTALDAT M, et al. Piezoelectric β-polymorph formation of new textiles by surface modification with coating process based on interfacialinteraction on the conformational variation of poly (vinylidene fluoride) (PVDF) chains. The European Physical Journal Applied Physics, 2020, 91(3): 31301.
DOI URL |
| [42] |
SUN Z, LIU J, WEI H, et al. Ultrahigh energy storage capacity in multilayer-structured cellulose-based dielectric capacitors caused by interfacial polarization-coupled Schottky barrier height. Journal of Materials Chemistry A, 2023, 11(37): 20089.
DOI URL |
| [43] |
SUN Z, WEI H, ZHAO S, et al. Utilizing the synergistic effect between the Schottky barrier and field redistribution to achieve high-density, low-consumption, cellulose-based flexible dielectric films for next-generation green energy storage capacitors. Journal of Materials Chemistry A, 2024, 12(1): 128.
DOI URL |
| [44] |
SUN Z, WANG S, ZHAO S, et al. Achieving low energy consuming bio-based piezoelectric nanogenerators via modulating the inner layer thickness for a highly sensitive pedometer. Journal of Materials Chemistry C, 2024, 12(3): 859.
DOI URL |
| [45] |
OTTA S, KAND L, DAS R K, et al. Piezoelectric, structural, vibration and optical properties of lead free based 0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic sample. Materials Today Communications, 2023, 35: 106191.
DOI URL |
| [46] |
JI W, FANG B, LU X, et al. Tailoring structure and performance of BCZT ceramics prepared via hydrothermal method. Physica B: Condensed Matter, 2019, 567: 65.
DOI URL |
| [47] |
LIU Y, PU Y, SUN Z, et al. Enhanced relaxor ferroelectric behavior of BCZT lead-free ceramics prepared by hydrothermal method. Materials Letters, 2014, 137: 128.
DOI URL |
| [48] |
BARASKAR B G, KOLEKAR Y D, THOMBARE B R, et al. Enhanced piezoelectric, ferroelectric, and electrostrictive properties of lead-free (1-x)BCZT-xBCST electroceramics with energy harvesting capability. Small, 2023, 19(37): 2300549.
DOI URL |
| [49] | MISSAOUI S, BOUHAMED A, NOURI H, et al. Sustainable and flexible piezoelectric nanogenerator with hybrid nanocomposites based on high-performance synthesized BCZT powder. ACS Applied Electronic Materials, 2024, 6(8): 5608. |
| [50] |
LI Y, TAN J, LIANG K, et al. Enhanced piezoelectric performance of multi-layered flexible polyvinylidene fluoride-BaTiO3-rGO films for monitoring human body motions. Journal of Materials Science: Materials in Electronics, 2022, 33(7): 4291.
DOI |
| [51] |
RAVINDRAN P, VIDYA R, KJEKSHUS A, et al. Theoretical investigation of magnetoelectric behavior in BiFeO3. Physical Review B-Condensed Matter and Materials Physics, 2006, 74(22): 224412.
DOI URL |
| [52] |
YANG P, ZHAO L, SHI S, et al. The influence of interface on the dielectric and tunable properties of BCZT/BZT ceramic. Journal of Materials Science: Materials in Electronics, 2024, 35(8): 610.
DOI |
| [53] |
JI D, ZHANG M, SUN H, et al. Enhanced mechanical and dielectric properties of lignocellulosic composite papers with biomimetic multilayered structure and multiple hydrogen-bonding interactions. International Journal of Biological Macromolecules, 2024, 281: 136247.
DOI URL |
| [54] |
HANANI Z, MEZZANE D, AMIOUD M, et al. Structural, dielectric, and ferroelectric properties of lead-free BCZT ceramics elaborated by low-temperature hydrothermal processing. Journal of Materials Science: Materials in Electronics, 2020, 31(13): 10096.
DOI |
| [55] |
JAFFARI G H, SHAWANA H, MUMTAZ F, et al. Electrical response of PVDF/BaTiO3 nanocomposite flexible free-standing films. Bulletin of Materials Science, 2023, 46(4): 227.
DOI |
| [56] |
SU C, HUANG X, ZHANG L, et al. Robust superhydrophobic wearable piezoelectric nanogenerators for self-powered body motion sensors. Nano Energy, 2023, 107: 108095.
DOI URL |
| [57] |
ZHANG Y, RUAN K, GU J. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small, 2021, 17(42): 2101951.
DOI URL |
| [1] | 袁利萍, 吴袁泊, 俞佳静, 张世琰, 孙铱, 胡云楚, 范友华. 磷钼酸插层水滑石复合CNFs气凝胶的制备及其隔热保温性能[J]. 无机材料学报, 2025, 40(4): 415-424. |
| [2] | 李婷婷, 张阳, 陈加航, 闵宇霖, 王久林. 锂硫电池S@pPAN正极用柔性黏结剂研究[J]. 无机材料学报, 2022, 37(2): 182-188. |
| [3] | 马丽娜,石川,赵宁,毕志杰,郭向欣,黄玉东. 细菌纤维素基纳米生物材料在储能领域的应用[J]. 无机材料学报, 2020, 35(2): 145-157. |
| [4] | 吕子夜, 唐谊平, 曹华珍, 郑国渠, 侯广亚. V掺杂对Ni-Co-S/细菌纤维素基碳气凝胶电催化性能的影响[J]. 无机材料学报, 2020, 35(10): 1142-1148. |
| [5] | 郑磊, 李劲, 刘洪波. AEP作用下溶胶-凝胶法制备纤维素基炭气凝胶及其对水溶液中Cu2+吸附性能[J]. 无机材料学报, 2017, 32(11): 1159-1164. |
| [6] | 赵军胜, 屈树新, 黄 萍, 刘宗光, 王铈汶, 翁 杰. 纳米晶体纤维素增强磷酸钙骨水泥的研究[J]. 无机材料学报, 2015, 30(3): 318-324. |
| [7] | 李 丹, 姚秀敏, 杨 勇, 黄政仁. SiC-ZrB2复合浆料流动性研究[J]. 无机材料学报, 2013, 28(5): 566-570. |
| [8] | 王改花, 代 波, 马拥军, 任 勇. 一种新型碳纳米纤维的电磁性能研究[J]. 无机材料学报, 2013, 28(4): 398-402. |
| [9] | 毛 瑞, 郭 洪, 田冬雪, 杨项军, 王世雄, 陈 景. 滤纸为模板制备中空SnO2纳米管锂离子电池负极材料[J]. 无机材料学报, 2013, 28(11): 1213-1216. |
| [10] | 彭新艳, 丁恩勇. 棒状纳米微晶纤维素诱导制备花状TiO2纳米晶体[J]. 无机材料学报, 2012, 27(10): 1068-1072. |
| [11] | 那文菊, 丁士华, 宋天秀, 王久石, 王 岩. (Ba1-xCax)(Ti0.82Zr0.18)O3陶瓷结构与介电性能研究[J]. 无机材料学报, 2011, 26(6): 655-658. |
| [12] | 刘浩怀, 张建华, 许庆陵, 张 利, 李玉宝. 包埋载药微球的羟基磷灰石/聚氨酯复合组织工程支架的研究[J]. 无机材料学报, 2011, 26(10): 1073-1077. |
| [13] | 蒋柳云,李玉宝,张利,王学江. 纳米羟基磷灰石/壳聚糖-羧甲基纤维素复合支架材料的研究[J]. 无机材料学报, 2008, 23(1): 135-140. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||