| [1] | CAI Z M, FENG P Z, ZHU C Q, et al. Dielectric breakdown behavior of ferroelectric ceramics: the role of pores. J. Eur. Ceram. Soc., 2021,  41(4): 2533. | 
																													
																						| [2] | PAN H, LI F, LIU Y, et al. Ultrahigh-energy density leadfree dielectric films via polymorphic nanodomain design. Science, 2019,  365(6453): 578. | 
																													
																						| [3] | CHEN K B, ZHOU X D, GAO M. Research progress and application of high power microwave technology. Winged Missile Journal, 2019,  6: 1. | 
																													
																						| [4] | CHAI Y Y. Research of the Ku band compact high-power microwave output window. Chengdu: Southwest Jiaotong University, 2016: 1-4. | 
																													
																						| [5] | ZHANG X, WANG T, YU Q Q, et al. Research progress of high-power waveguide window. High Power Laser and Particle Beams, 2021,  33: 023001. | 
																													
																						| [6] | LI Q, CHEN L, GADINSKI M R, et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature, 2015,  523: 576. | 
																													
																						| [7] | KHANCHAITIT P, HAN K, GADINSKI M R, et al. Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage. Nat. Commun., 2013,  4: 2845. DOI    
																																																	PMID
 | 
																													
																						| [8] | HUANG Y, CHEN Y, LI X, et al. Enhanced dielectric breakdown strength in Ni2O3 modified Al2O3-SiO2-TiO2 based dielectric ceramics. J. Eur. Ceram. Soc., 2018,  38(11): 3861. | 
																													
																						| [9] | LIU M, CAO M, ZENG F, et al. Fine-grained silica-coated barium strontium titanate ceramics with high energy storage. Ceram. Inter., 2018,  44(16): 20239. | 
																													
																						| [10] | PING W W, LIU W F, LI S T. Enhanced energy storage property in glass-added Ba(Zr0.2Ti0.8)O3-0.15(Ba0.7Ca0.3)TiO3 ceramics and the charge relaxation. Ceram. Inter., 2019,  9(45): 11388. | 
																													
																						| [11] | ZHANG J, WANG J, GAO D, et al. Enhanced energy storage performances of CaTiO3-based ceramic through A-site Sm3+ doping and A-site vacancy. J. Eur. Ceram. Soc., 2021,  41(1): 352. | 
																													
																						| [12] | YANG L, KONG X, LI F, et al. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci., 2019,  102: 72. DOI
 | 
																													
																						| [13] | ROESSLER D M, WALKER W C. Electronic spectrum and ultraviolet optical properties of crystalline MgO. Phys. Rev., 1967,  159: 733. | 
																													
																						| [14] | BEAUCHAMP E K. Effect of microstructure on pulse electrical strength of MgO. J. Amer. Ceram. Soc., 1971,  54: 484. | 
																													
																						| [15] | GÓMEZ-RODRÍGUEZ C, GARCÍA-QUIÑONEZ L V, AGUILAR-MARTÍNEZ J A, et al. MgO-ZrO2 ceramic composites for silicomanganese production. Materials, 2022,  15: 2421. | 
																													
																						| [16] | ŚNIEŻEK E, SZCZERBAA J, STOCH P, et al. Structural properties of MgO-ZrO2 ceramics obtained by conventional sintering, arc melting and field assisted sintering technique. Mater. Desi., 2016,  99: 412. | 
																													
																						| [17] | WANG X, LIANG P, CHAO X, et al. Dielectric properties and impedance spectroscopy of MnCO3-modified (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free ceramics. J. Am. Ceram. Soc., 2015,  98(5): 1506. | 
																													
																						| [18] | CEN Z, DONG Z, XU Z, et al. Improving fatigue properties, temperature stability and piezoelectric properties of KNN-based ceramics via sintering in reducing atmosphere. J. Eur. Ceram. Soc., 2021,  41(8): 4462. | 
																													
																						| [19] | WANG T, LI Z. Effects of MnO2 addition on the structure and electrical properties of PIN-PZN-PT ceramics with MPB composition. J. Mater. Sci.: Mater. Elect., 2020,  31(24): 22740. | 
																													
																						| [20] | HUANG Q Z, LU G M, SUN Z, et al. Effect of TiO2 on sintering and grain growth kinetics of MgO from MgCl2·6H2O. Mater. Trans. B, 2013,  44(2): 344. | 
																													
																						| [21] | COOPER M W D, STANEK C R, ANDERSSON D A. The role of dopant charge state on defect chemistry and grain growth of doped UO2. Act. Mater., 2018,  150: 403. | 
																													
																						| [22] | FENG Y, WU J, CHI Q, et al. Defects and aliovalent doping engineering in electroceramics. Chem. Rev., 2020,  120(3): 1710. DOI    
																																																	PMID
 | 
																													
																						| [23] | ZHANG C, CHEN Y, LI X, et al. Effect of LiF addition on sintering behavior and dielectric breakdown mechanism of MgO- based microwave dielectric ceramics. J. Mater., 2021,  7(3): 478. | 
																													
																						| [24] | TAN Z, LIN H, SONG K, et al. Effects of TiO2 additive on ultra-low-loss MgO-LiF microwave dielectric ceramics. Ceram. Inter., 2022,  46(5): 5753. | 
																													
																						| [25] | XIONG Z, TANG B, ZHANG X, et al. Suppression of Ti3+ generation in Ba3.75Nd9.5Ti17.5M0.5O54 (M = Cu, Cr, Al, Mn) ceramics. Ceram. Inter., 2018,  44(15): 19058. |