[1] |
CAI Z M, FENG P Z, ZHU C Q, et al. Dielectric breakdown behavior of ferroelectric ceramics: the role of pores. J. Eur. Ceram. Soc., 2021, 41(4): 2533.
|
[2] |
PAN H, LI F, LIU Y, et al. Ultrahigh-energy density leadfree dielectric films via polymorphic nanodomain design. Science, 2019, 365(6453): 578.
|
[3] |
CHEN K B, ZHOU X D, GAO M. Research progress and application of high power microwave technology. Winged Missile Journal, 2019, 6: 1.
|
[4] |
CHAI Y Y. Research of the Ku band compact high-power microwave output window. Chengdu: Southwest Jiaotong University, 2016: 1-4.
|
[5] |
ZHANG X, WANG T, YU Q Q, et al. Research progress of high-power waveguide window. High Power Laser and Particle Beams, 2021, 33: 023001.
|
[6] |
LI Q, CHEN L, GADINSKI M R, et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature, 2015, 523: 576.
|
[7] |
KHANCHAITIT P, HAN K, GADINSKI M R, et al. Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage. Nat. Commun., 2013, 4: 2845.
DOI
PMID
|
[8] |
HUANG Y, CHEN Y, LI X, et al. Enhanced dielectric breakdown strength in Ni2O3 modified Al2O3-SiO2-TiO2 based dielectric ceramics. J. Eur. Ceram. Soc., 2018, 38(11): 3861.
|
[9] |
LIU M, CAO M, ZENG F, et al. Fine-grained silica-coated barium strontium titanate ceramics with high energy storage. Ceram. Inter., 2018, 44(16): 20239.
|
[10] |
PING W W, LIU W F, LI S T. Enhanced energy storage property in glass-added Ba(Zr0.2Ti0.8)O3-0.15(Ba0.7Ca0.3)TiO3 ceramics and the charge relaxation. Ceram. Inter., 2019, 9(45): 11388.
|
[11] |
ZHANG J, WANG J, GAO D, et al. Enhanced energy storage performances of CaTiO3-based ceramic through A-site Sm3+ doping and A-site vacancy. J. Eur. Ceram. Soc., 2021, 41(1): 352.
|
[12] |
YANG L, KONG X, LI F, et al. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci., 2019, 102: 72.
DOI
|
[13] |
ROESSLER D M, WALKER W C. Electronic spectrum and ultraviolet optical properties of crystalline MgO. Phys. Rev., 1967, 159: 733.
|
[14] |
BEAUCHAMP E K. Effect of microstructure on pulse electrical strength of MgO. J. Amer. Ceram. Soc., 1971, 54: 484.
|
[15] |
GÓMEZ-RODRÍGUEZ C, GARCÍA-QUIÑONEZ L V, AGUILAR-MARTÍNEZ J A, et al. MgO-ZrO2 ceramic composites for silicomanganese production. Materials, 2022, 15: 2421.
|
[16] |
ŚNIEŻEK E, SZCZERBAA J, STOCH P, et al. Structural properties of MgO-ZrO2 ceramics obtained by conventional sintering, arc melting and field assisted sintering technique. Mater. Desi., 2016, 99: 412.
|
[17] |
WANG X, LIANG P, CHAO X, et al. Dielectric properties and impedance spectroscopy of MnCO3-modified (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free ceramics. J. Am. Ceram. Soc., 2015, 98(5): 1506.
|
[18] |
CEN Z, DONG Z, XU Z, et al. Improving fatigue properties, temperature stability and piezoelectric properties of KNN-based ceramics via sintering in reducing atmosphere. J. Eur. Ceram. Soc., 2021, 41(8): 4462.
|
[19] |
WANG T, LI Z. Effects of MnO2 addition on the structure and electrical properties of PIN-PZN-PT ceramics with MPB composition. J. Mater. Sci.: Mater. Elect., 2020, 31(24): 22740.
|
[20] |
HUANG Q Z, LU G M, SUN Z, et al. Effect of TiO2 on sintering and grain growth kinetics of MgO from MgCl2·6H2O. Mater. Trans. B, 2013, 44(2): 344.
|
[21] |
COOPER M W D, STANEK C R, ANDERSSON D A. The role of dopant charge state on defect chemistry and grain growth of doped UO2. Act. Mater., 2018, 150: 403.
|
[22] |
FENG Y, WU J, CHI Q, et al. Defects and aliovalent doping engineering in electroceramics. Chem. Rev., 2020, 120(3): 1710.
DOI
PMID
|
[23] |
ZHANG C, CHEN Y, LI X, et al. Effect of LiF addition on sintering behavior and dielectric breakdown mechanism of MgO- based microwave dielectric ceramics. J. Mater., 2021, 7(3): 478.
|
[24] |
TAN Z, LIN H, SONG K, et al. Effects of TiO2 additive on ultra-low-loss MgO-LiF microwave dielectric ceramics. Ceram. Inter., 2022, 46(5): 5753.
|
[25] |
XIONG Z, TANG B, ZHANG X, et al. Suppression of Ti3+ generation in Ba3.75Nd9.5Ti17.5M0.5O54 (M = Cu, Cr, Al, Mn) ceramics. Ceram. Inter., 2018, 44(15): 19058.
|