无机材料学报 ›› 2022, Vol. 37 ›› Issue (4): 427-435.DOI: 10.15541/jim20210264 CSTR: 32189.14.10.15541/jim20210264

所属专题: 【生物材料】骨骼与齿类组织修复(202409) 【制备方法】3D打印(202409)

• 研究论文 • 上一篇    下一篇

生物活性玻璃-二氧化锰复合支架的制备与表征

施吉翔1(), 翟东2, 朱敏1(), 朱钰方2()   

  1. 1.上海理工大学 材料科学与工程学院, 上海 200093
    2.中国科学院 上海硅酸盐研究所, 上海 200050
  • 收稿日期:2021-04-19 修回日期:2021-06-25 出版日期:2022-04-20 网络出版日期:2021-07-20
  • 通讯作者: 朱敏, 副教授. E-mail: mzhu@usst.edu.cn;
    朱钰方, 教授. E-mail: zhuyufang@mail.sic.ac.cn
  • 作者简介:施吉翔(1991-), 男, 硕士研究生. E-mail: 929789873@qq.com
  • 基金资助:
    国家自然科学基金(51872185);上海理工大学科技发展项目(2020KJFZ014)

Preparation and Characterization of Bioactive Glass-Manganese Dioxide Composite Scaffolds

SHI Jixiang1(), ZHAI Dong2, ZHU Min1(), ZHU Yufang2()   

  1. 1. School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
    2. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • Received:2021-04-19 Revised:2021-06-25 Published:2022-04-20 Online:2021-07-20
  • Contact: ZHU Ming, associate professor. E-mail: mzhu@usst.edu.cn;
    ZHU Yufang, professor. E-mail: zhuyufang@mail.sic.ac.cn
  • About author:SHI Jixiang (1991-), male, Master candidate. E-mail: 929789873@qq.com
  • Supported by:
    National Natural Science Foundation of China(51872185);Foundation of University of Shanghai for Science and Technology(2020KJFZ014)

摘要:

骨修复支架在植入缺损处后出现的炎症与氧化应激有关, 其中过氧化氢(H2O2)浓度过高是引起氧化应激的主要原因之一。二氧化锰(MnO2)能够通过催化分解H2O2来消除植入物周围环境过量的H2O2, 同时催化H2O2分解产生的氧气(O2)能够缓解骨缺损处因血供不足而导致的缺氧环境, 从而有利于骨组织再生与骨缺损修复。本研究采用简单的氧化还原法在3D打印制备的生物活性玻璃(BG)支架表面原位沉积MnO2颗粒, 得到BG-MnO2复合支架(BGM), 赋予BG支架清除H2O2的同时提供O2的能力。研究结果表明, BGM支架表面沉积MnO2含量随反应溶液中高锰酸钾浓度升高而增加, 其抗压强度随MnO2含量增加而增强, 但这些支架的孔隙率和降解速度基本保持不变。更为重要的是, BGM支架能够在H2O2环境中持续催化分解H2O2产生O2, 当不同Mn含量的BGM (BGM5和BMG9)支架在浓度为2 mmol/L的H2O2溶液中催化分解H2O2产生的O2能使溶液中饱和氧浓度分别达到8.4和11 mg/L。细胞实验结果表明, BGM支架对骨髓间充质干细胞的增殖和碱性磷酸酶活性有一定促进作用。因此, BGM支架在骨组织修复领域具有较大的应用潜力。

关键词: 生物活性玻璃支架, 二氧化锰, 氧化应激, 三维打印, 骨组织工程

Abstract:

Inflammation in bone defect after being implanted scaffold is related to oxidative stress, which is caused mainly by higher concentration of hydrogen peroxide (H2O2). Manganese dioxide (MnO2) can catalyze H2O2 decomposition to decrease excessive H2O2 in the surrounding environment of scaffolds. Furthermore, the oxygen (O2) generated by the decomposition of H2O2 can alleviate the hypoxia caused by insufficient blood supply in bone defects, which is conducive to bone tissue regeneration. Here, a simple redox method was proposed to deposit MnO2 particles on the surface of 3D printed bioactive glass (BG) scaffolds for the preparation of BG-MnO2 composite scaffolds (BGM), which endows BG-MnO2 scaffolds with the ability of H2O2 scavenging and O2 supplying simultaneously. The results showed that the MnO2 content deposited on the surface of BGM scaffolds was increased with the increase of potassium permanganate concentration in the reaction solution, and the compressive strength of BGM scaffolds was increased with the increase of MnO2 content. However, porosity and degradation rate of these scaffolds with or without MnO2 remained the same. More importantly, BGM scaffolds can continuously catalyze the decomposition of H2O2 to produce O2 in H2O2 environment. When BGM with different Mn content scaffolds (BMG5 and BGM9) catalyzed the decomposition of H2O2 to produce O2 in 2 mmol/L H2O2 solution, the saturated oxygen concentration in the solution could reach 8.4 and 11 mg/L, respectively. In vitro cell experiments showed that BGM scaffolds could promote the proliferation and alkaline phosphatase activity of rabbit bone marrow mesenchymal stem cells. Hence, BGM scaffolds show great potential in bone regeneration.

Key words: bioactive glass scaffold, manganese dioxide, oxidative stress, 3D printing, bone tissue engineering

中图分类号: