无机材料学报 ›› 2021, Vol. 36 ›› Issue (10): 1083-1090.DOI: 10.15541/jim20200745 CSTR: 32189.14.10.15541/jim20200745
肖瑶1(), 吴中杰2, 崔美3, 苏荣欣3,4, 谢连科2, 黄仁亮4(
)
收稿日期:
2020-12-30
修回日期:
2021-01-25
出版日期:
2021-10-20
网络出版日期:
2021-03-12
通讯作者:
黄仁亮, 副教授. E-mail: tjuhrl@tju.edu.cn
作者简介:
肖 瑶(1995-), 女, 硕士研究生. E-mail: xiaoyao950827@gmail.com
基金资助:
XIAO Yao1(), WU Zhongjie2, CUI Mei3, SU Rongxin3,4, XIE Lianke2, HUANG Renliang4(
)
Received:
2020-12-30
Revised:
2021-01-25
Published:
2021-10-20
Online:
2021-03-12
Contact:
HUANG Renliang, associate professor. E-mail: tjuhrl@tju.edu.cn
About author:
XIAO Yao (1995-), female, Master candidate. E-mail: xiaoyao950827@gmail.com
Supported by:
摘要:
重金属污染具有高毒性、持久存留和生物积累等特性, 严重危害人体健康和生态安全。本研究通过氯化钙对玉米芯残渣和膨润土混合物进行碱改性, 在无氧条件下高温煅烧制备了一种碱改性生物炭-膨润土复合物(CaO-Bent-CB)。该复合物的比表面积高, 达到441.1 m2/g, 明显高于直接煅烧制备的生物碳(132.7 m2/g)和碱改性生物炭(177.2 m2/g)。进一步评价了该复合物对水中铅离子吸附性能, 结果表明在水中铅离子浓度为120 mg/L, 膨润土与玉米芯残渣质量比为1:5, 用量为1 g/L条件下, 吸附6 h后铅离子去除率达98%, 吸附量为109.6 mg/g, 均高于生物炭(13.4 mg/g)、膨润土(72.9 mg/g)和碱改性生物炭(86.9 mg/g)。此外, 采用CaO-Bent-CB对铅离子污染土壤进行稳定化处理, 当土壤中铅离子浓度为2200 mg/kg, CaO-Bent-CB用量为土壤干重的8%时, 在pH=3.2的硫酸-硝酸浸提液中浸出12 h, 酸浸出铅离子浓度低至4.5 mg/L, 低于危险废物鉴别标准值(5 mg/L)。上述研究结果表明这种生物炭-膨润土共改性复合物在重金属污染水体和土壤修复中具有很好的应用前景。
中图分类号:
肖瑶, 吴中杰, 崔美, 苏荣欣, 谢连科, 黄仁亮. 生物炭-膨润土共改性及其铅离子吸附与稳定化研究[J]. 无机材料学报, 2021, 36(10): 1083-1090.
XIAO Yao, WU Zhongjie, CUI Mei, SU Rongxin, XIE Lianke, HUANG Renliang. Co-modification of Biochar and Bentonite for Adsorption and Stabilization of Pb2+ ions[J]. Journal of Inorganic Materials, 2021, 36(10): 1083-1090.
Sample | Specific surface area/(m2·g-1) | Average pore width/nm |
---|---|---|
CB | 132.72 | 3.06 |
CaO-CB | 177.22 | 3.63 |
CaO-Bent-CB | 441.06 | 3.78 |
表1 不同生物炭的比表面积和孔径
Table 1 Specific surface area and pore size of biochars
Sample | Specific surface area/(m2·g-1) | Average pore width/nm |
---|---|---|
CB | 132.72 | 3.06 |
CaO-CB | 177.22 | 3.63 |
CaO-Bent-CB | 441.06 | 3.78 |
Sample | Qe/(mg·g-1) | Pseudo first-order kinetic model | Pseudo second-order kinetic model | Intraparticle diffusion kinetic model | |||
---|---|---|---|---|---|---|---|
R2 | k1/min-1 | R2 | k2/(g·mg-1·min-1/2) | R2 | kid/(g·mg-1·min-1/2) | ||
CaO-Bent-CB | 88.616 | 0.887 | 0.0284 | 0.983 | 0.000484 | 0.851 | 1.923 |
表2 CaO-Bent-CB吸附Pb2+的动力学参数
Table 2 Parameters of the kinetic model for the adsorption of Pb2+ by CaO-Bent-CB
Sample | Qe/(mg·g-1) | Pseudo first-order kinetic model | Pseudo second-order kinetic model | Intraparticle diffusion kinetic model | |||
---|---|---|---|---|---|---|---|
R2 | k1/min-1 | R2 | k2/(g·mg-1·min-1/2) | R2 | kid/(g·mg-1·min-1/2) | ||
CaO-Bent-CB | 88.616 | 0.887 | 0.0284 | 0.983 | 0.000484 | 0.851 | 1.923 |
Sample | Qmax/(mg·g-1) | Langmuir adsorption model | Freundlich adsorption model | Temkin adsorption model | ||||
---|---|---|---|---|---|---|---|---|
R2 | KL/(L·g-1) | R2 | KF/(mg·g-1) | R2 | KT/(mg·g-1) | B | ||
CaO-Bent-CB | 232.167 | 0.989 | 0.00102 | 0.988 | 1.238 | 0.968 | 77.395 | 0.0671 |
表3 CaO-Bent-CB吸附Pb2+的热力学参数
Table 3 Thermodynamic parameters of the adsorption of Pb2+ by CaO-Bent-CB according to models
Sample | Qmax/(mg·g-1) | Langmuir adsorption model | Freundlich adsorption model | Temkin adsorption model | ||||
---|---|---|---|---|---|---|---|---|
R2 | KL/(L·g-1) | R2 | KF/(mg·g-1) | R2 | KT/(mg·g-1) | B | ||
CaO-Bent-CB | 232.167 | 0.989 | 0.00102 | 0.988 | 1.238 | 0.968 | 77.395 | 0.0671 |
[1] |
SONG B, ZENG G M, GONG J L, et al. Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environment International, 2017, 105:43-55.
DOI URL |
[2] | COBBINA S J, DUWIEJUAH A B, QUANSAH R, et al. Comparative assessment of heavy metals in drinking water sources in two small-scale mining communities in Northern Ghana. International Journal of Environmental Research and Public Health, 2015, 12(9):10620-10634. |
[3] |
XINDE I, GAO B, YAO Y Y, et al. Biochar as a lowcost adsorbent for heavy metal removal: a review. Critical Reviews in Environmental Science and Technology, 2016, 46:406-433.
DOI URL |
[4] |
CHEN H M, ZHANG J W, TANG L Y, et al. Enhanced Pb immobilization via the combination of biochar and phosphate solubilizing bacteria. Environment International, 2019, 127:395-401.
DOI URL |
[5] |
KABIRI P, MOTAGHIAN H, HOSSEINPUR A. Effects of walnut leaves biochars on lead and zinc fractionation and phytotoxicity in a naturally calcareous highly contaminated soil. Water Air and Soil Pollution, 2019, 230(11):263.
DOI URL |
[6] |
CHEN J F, CHEN Y H, LIU W, et al. Developmental lead acetate exposure induces embryonic toxicity and memory deficit in adult zebrafish. Neurotoxicology and Teratology, 2012, 34(6):581-586.
DOI URL |
[7] | HAO S Y, ZHONG Y J, PEPE F, et al. Adsorption of Pb2+ and Cu2+ on anionic surfactant-templated amino-functionalized mesoporous silicas. Chemical Engineering Journal, 2012, 189:160-167. |
[8] | SCHETTLER T. Toxic threats to neurologic development of children. Environmental Health Perspectives, 2001, 109:813-816. |
[9] |
UDDIN M K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 2017, 308:438-462.
DOI URL |
[10] | GUO Z Z, ZHANG X D, KANG Y, et al. Biomass-derived carbon sorbents for Cd(Ⅱ) removal: activation and adsorption mechanism. ACS Sustainable Chemistry & Engineering, 2017, 5(5):4103-4109. |
[11] | WANG X X, LI X, WANG J Q, et al. Recent advances in carbon nitride-based nanomaterials for the removal of heavy metal ions from aqueous solution. Journal of Inorganic Materials, 2020, 35(3):260-270. |
[12] |
WANG X X, YU S J, WANG X K. Removal of radionuclides by metal-organic framework-based materials. Journal of Inorganic Materials, 2019, 34(1):17-26.
DOI URL |
[13] |
DERIKVANDI H, NEZAMZADEH-EJHIEH A. Comprehensive study on enhanced photocatalytic activity of heterojunction ZnS-NiS/zeolite nanoparticles: experimental design based on response surface methodology (RSM), impedance spectroscopy and GC-MASS studies. Journal of Colloid and Interface Science, 2017, 490:652-664.
DOI URL |
[14] |
MOURHLY A, KHACHANI M, EL HAMIDI A, et al. The synthesis and characterization of low-cost mesoporous silica SiO2 from local pumice rock. Nanomaterials and Nanotechnology, 2015, 5:35.
DOI URL |
[15] | WANG X, FENG J H, CAI Y W, et al. Porous biochar modified with polyethyleneimine (PEI) for effective enrichment of U(VI) in aqueous solution. Science of the Total Environment, 2020, 708:134575. |
[16] |
KUMAR A, TSECHANSKY L, LEW B, et al. Biochar alleviates phytotoxicity in Ficus elastica grown in Zn-contaminated soil. Science of the Total Environment, 2018, 618:188-198.
DOI URL |
[17] |
HUANG M, LI Z W, LUO N L, et al. Application potential of biochar in environment: insight from degradation of biochar-derived DOM and complexation of DOM with heavy metals. Science of the Total Environment, 2019, 646:220-228.
DOI URL |
[18] |
HOSLETT J, GHAZAL H, AHMAD D, et al. Removal of copper ions from aqueous solution using low temperature biochar derived from the pyrolysis of municipal solid waste. Science of the Total Environment, 2019, 673:777-789.
DOI URL |
[19] |
SHEN Z T, TIAN D, ZHANG X Y, et al. Mechanisms of biochar assisted immobilization of Pb2+ by bioapatite in aqueous solution. Chemosphere, 2018, 190:260-266.
DOI URL |
[20] | OK Y S, CHANG S X, GAO B, et al. SMART biochar technology-A shifting paradigm towards advanced materials and healthcare research. Environmental Technology & Innovation, 2015, 4:206-209. |
[21] |
RAJAPAKSHA A U, CHEN S S, TSANG D C W, et al. Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere, 2016, 148:276-291.
DOI URL |
[22] | RIZWAN M, LIN Q M, CHEN X J, et al. Synthesis, characterization and application of magnetic and acid modified biochars following alkaline pretreatment of rice and cotton straws. Science of the Total Environment, 2020, 714:136532. |
[23] |
AGRAFIOTI E, KALDERIS D, DIAMADOPOULOS E. Ca and Fe modified biochars as adsorbents of arsenic and chromium in aqueous solutions. Journal of Environmental Management, 2014, 146:444-450.
DOI URL |
[24] | WANG H, YANG N C, QIU M Q. Adsorption of Cr(VI) from aqueous solution by biochar-clay derived from clay and peanut shell. Journal of Inorganic Materials, 2020, 35(3):301-308. |
[25] | SHEN Z T, HOU D Y, ZHAO B, et al. Stability of heavy metals in soil washing residue with and without biochar addition under accelerated ageing. Science of the Total Environment, 2018, 619:185-193. |
[26] |
ZHAO B, O'CONNOR D, ZHANG J L, et al. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. Journal of Cleaner Production, 2018, 174:977-987.
DOI URL |
[27] |
CHEN Y G, LIAO R P, YU C, et al. Sorption of Pb(II) on sodium polyacrylate modified bentonite. Advanced Powder Technology, 2020, 31(8):3274-3286.
DOI URL |
[28] |
JIANG J, XU R K. Application of crop straw derived biochars to Cu(II) contaminated Ultisol: evaluating role of alkali and organic functional groups in Cu(II) immobilization. Bioresource Technology, 2013, 133:537-545.
DOI URL |
[29] |
HAO F H, ZHAO X C, OUYANG W, et al. Molecular structure of corncob-derived biochars and the mechanism of atrazine sorption. Agronomy Journal, 2013, 105(3):773-782.
DOI URL |
[30] |
ZUO Z L, YU Q B, LUO S Y, et al. Effects of CaO on two-step reduction characteristics of copper slag using biochar as reducer: thermodynamic and kinetics. Energy & Fuels, 2020, 34(1):491-500.
DOI URL |
[31] | CASTRO-CASTRO J D, SANABRIA-GONZALEZ N R, GIRALDO-GOMEZ G I. Experimental data of adsorption of Cr(III) from aqueous solution using a bentonite: optimization by response surface methodology. Data in Brief, 2020, 28:105022. |
[32] |
BUDAI A, CALUCCI L, RASSE D P, et al. Effects of pyrolysis conditions on Miscanthus and corncob chars: characterization by IR, solid state NMR and BPCA analysis. Journal of Analytical and Applied Pyrolysis, 2017, 128:335-345.
DOI URL |
[33] |
VU T M, TRINH V T, DOAN D P, et al. Removing ammonium from water using modified corncob-biochar. Science of the Total Environment, 2017, 579:612-619.
DOI URL |
[34] |
HU B W, HU Q Y, LI X, et al. Rapid and highly efficient removal of Eu(III) from aqueous solutions using graphene oxide. Journal of Molecular Liquids, 2017, 229:6-14.
DOI URL |
[35] |
DONG H R, DENG J M, XIE Y K, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution. Journal of Hazardous Materials, 2017, 332:79-86.
DOI URL |
[36] |
ZHANG R, CHEN C L, LI J, et al. Preparation of montmorillonite@carbon composite and its application for U(VI) removal from aqueous solution. Applied Surface Science, 2015, 349:129-137.
DOI URL |
[37] |
LIU Z G, ZHANG F S. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. Journal of Hazardous Materials, 2009, 167(1/2/3):933-939.
DOI URL |
[38] |
SUZUKI T, NAKAMURA A, NIINAE M, et al. Lead immobilization in artificially contaminated kaolinite using magnesium oxide-based materials: immobilization mechanisms and long-term evaluation. Chemical Engineering Journal, 2013, 232:380-387.
DOI URL |
[39] | DONG L J, WU S Y, LI S B, et al. Sorption behaviors and mechanisms of Eu(III) on rice straw-derived biochar. Journal of Inorganic Materials, 2020, 35(3):390-398. |
[40] |
CHEN Z S, HE J T, CHEN L, et al. Sorption and desorption properties of Eu(III) on attapulgite. Journal of Radioanalytical and Nuclear Chemistry, 2016, 307(2):1093-1104.
DOI URL |
[41] |
JING Y D, CAO Y Q, YANG Q Q, et al. Removal of Cd(II) from aqueous solution by clay-biochar composite prepared from alternanthera philoxeroides and bentonite. Bioresources, 2020, 15(1):598-615.
DOI URL |
[42] |
TASAR S, OZER A A. Thermodynamic and kinetic evaluation of the adsorption of Pb(II) ions using peanut (Arachis Hypogaea) shell-based biochar from aqueous media. Polish Journal of Environmental Studies, 2020, 29(1):293-305.
DOI URL |
[43] |
SHEN Z T, ZHANG Y Y, JIN F, et al. Qualitative and quantitative characterisation of adsorption mechanisms of lead on four biochars. Science of the Total Environment, 2017, 609:1401-1410.
DOI URL |
[1] | 王世怡, 冯爱虎, 李晓燕, 于云. Fe3O4负载Ti3C2Tx对Pb(II)的吸附性能研究[J]. 无机材料学报, 2023, 38(5): 521-528. |
[2] | 于业帆, 徐玲, 倪忠斌, 施冬健, 陈明清. 普鲁士蓝/生物炭材料的制备及其氨氮吸附机理[J]. 无机材料学报, 2023, 38(2): 205-212. |
[3] | 张东硕,蔡昊,高凯茵,马子川. Zn2SiO4-ZnO-生物炭复合物的制备及其可见光催化H2O2降解甲硝唑[J]. 无机材料学报, 2020, 35(8): 923-930. |
[4] | 李丽, 郭筱洁, 金阳, 陈朝贵, Abdullah M Asiri, HadiM M arwani, 赵轻舟, 盛国栋. 氮化硼纳米片吸附Cd(II)的动力学和热力学研究[J]. 无机材料学报, 2020, 35(3): 284-292. |
[5] | 王祥学, 李星, 王佳琦, 朱洪涛. 氮化碳基纳米复合材料在重金属去除方面研究进展[J]. 无机材料学报, 2020, 35(3): 260-270. |
[6] | 王海, 阳柠灿, 邱木清. 花生壳生物炭-黏土吸附水中的Cr(VI)[J]. 无机材料学报, 2020, 35(3): 301-308. |
[7] | 董丽佳, 吴思颖, 李生波, 魏作富, 杨国, 胡保卫. 稻草生物炭对铕的吸附行为及机理研究[J]. 无机材料学报, 2020, 35(3): 390-398. |
[8] | 卢少微, 曾宪君, 张春旭, 王继杰, 聂 鹏. POSS/粘土/多壁碳纳米管杂化碳纳米纸基复合材料防火性研究[J]. 无机材料学报, 2014, 29(6): 589-593. |
[9] | 陈飞飞,徐铁峰,戴世勋,聂秋华,沈 祥,王训四. 重金属氧化物玻璃中双光子吸收的研究[J]. 无机材料学报, 2010, 25(3): 289-292. |
[10] | 余驰超,张玲霞,秦飞,李江田,施剑林,严东生. 介孔-枝状化合物复合体系对重金属离子吸附研究[J]. 无机材料学报, 2008, 23(6): 1231-1235. |
[11] | 戴劲草,萧子敬,叶玲,黄继泰. 含钛多孔粘土材料的合成与表征[J]. 无机材料学报, 2000, 15(4): 647-652. |
[12] | 谢鲜梅. 锌铝层状复合氢氧化物的合成研究[J]. 无机材料学报, 1999, 14(2): 245-250. |
[13] | 戴劲草,萧子敬,叶玲,黄继泰. 粘土的层间交联和多孔材料的形成条件[J]. 无机材料学报, 1999, 14(1): 90-94. |
[14] | 温兆银,林祖纕,江东亮. 阴离子粘土LiAl2(OH)6X·2H2O(X=OH-,1/2CO32-)的离子交换特性[J]. 无机材料学报, 1998, 13(4): 637-640. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||