无机材料学报 ›› 2014, Vol. 29 ›› Issue (6): 650-656.DOI: 10.3724/SP.J.1077.2014.13501 CSTR: 32189.14.SP.J.1077.2014.13501

• • 上一篇    下一篇

多壳层化中空微球两相陶瓷生物材料制备研究

杨永祝1, 张 雷2, 杨国敬2, 高长有1, 苟中入1   

  1. (1. 浙江大学 浙江加州国际纳米技术研究院, 杭州310058; 2. 温州医科大学 附属第三医院, 瑞安 325200)
  • 收稿日期:2013-09-30 修回日期:2013-11-14 出版日期:2014-06-20 网络出版日期:2014-05-27
  • 作者简介:杨永祝(1988-), 男, 硕士研究生. E-mail: 21126035@zju.edu.cn
  • 基金资助:
    国家自然科学基金(51372218, 51102211, 81271956);浙江省自然科学基金(Q14H060011);浙江省科技厅公益性项目(2011C3-3049, 2012C23067)

Preparation and Characterization of Multi-shell Hollow Biphase Bioceramic Microsphere Composites

YANG Yong-Zhu1, ZHANG Lei2, YANG Guo-Jing2, GAO Chang-You1, GOU Zhong-Ru1   

  1. (1. Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, China; 2. Rui’an People’s Hospial & the 3rd Affiliated Hospital to Wenzhou Medical University, Rui’an 325200, China)
  • Received:2013-09-30 Revised:2013-11-14 Published:2014-06-20 Online:2014-05-27
  • About author:YANG Yong-Zhu. E-mail: 21126035@zju.edu.cn
  • Supported by:
    National Natural Science Foundation of China (51372218, 51102211, 81271956);Zhejiang Provincial Natural Science Foundation of China (Q14H060011);Science and Technology Department Foundation of Zhejiang Province (2011C33049, 2012C23067)

摘要:

利用硅灰石(CaSiO3)和β-磷酸三钙(β-TCP)在骨损伤环境中降解速率存在显著性差异的基本特性, 以海藻多糖凝胶球为模板, 运用层-层包裹方法构建CaSiO3、β-TCP交替包裹的多壳层化中空微球。首先, 将海藻酸钠与硅酸钠的混合水溶胶逐滴加入到温和搅拌的硝酸钙水溶液中, 形成由水合硅酸钙盐为壳层的海藻多糖基复合微球, 然后将该复合微球依次浸入到含β-TCP的海藻酸钠溶液和含CaSiO3的海藻酸钠溶液中, 温和搅拌后将微球悬浮液分离, 再经真空冷冻干燥和850℃煅烧处理, 从而获得以CaSiO3为最内壳层并具有双壳层或三壳层的中空微球。按类似步骤也可以制备以β-TCP为最内壳层的多壳层中空微球。运用SEM、EDX、XRD和FTIR对该类微球的微结构和组成进行了分析。运用弱酸性Tris缓冲液(pH=5.2)对双壳层中空微球的降解。实验证明, 缓冲液中硅、磷浓度变化特征与其外壳层、内壳层化学组成(即β-TCP或CaSiO3)密切相关。本研究结果对构建降解速率阶段可调的复合陶瓷多孔生物材料以及研究原位骨再生效率与孔道网络演化规律之间关系等具有重要学术价值。

关键词: 降解性可调, 多壳层化中空微球, 硅灰石, β-磷酸三钙, 生物活性陶瓷

Abstract:

A series of hollow bioceramic microspheres with two or three shell layers were fabricated via alginate microsphere template and layer-by-layer coating techniques. The Na2SiO3-alginate mixture hydrosol beads were firstly injected into the Ca(NO3)2 aqueous solution under mild stirring to form calcium silicate hydrate-coated alginate microspheres. The composite microspheres were dispersed into the beta-tricalcium phosphate (β-TCP) -containing alginate hydrosol and wollastonite (CaSiO3)-containing alginate hydrosol in turn while gently stirring. The microspheres were filtered, dried in vacuum and finally calcined at 850℃ for 2 h to obtain the multi-shell hollow bi-phase ceramic microspheres. The microstructure and chemical composition of the microspheres were characterized by SEM, EDX, XRD and FTIR analysis. In vitro biodegradation behavior of the two-shell hollow microspheres was tested in weak acidic Tris buffer and confirmed a unique controlled release characteristic for the silicate and phosphate groups. These results suggest that the rational design of the two- or multi-shell layer allows the preparation of bioceramic composites composed of β-TCP and CaSiO3 with stage adjustable biodegradation and these biomaterials are potential candidates for improving bone regeneration and repair.

Key words: stage adjustable degradation, multi-shell hollow microspheres, wollastonate, β-TCP, bioceramics

中图分类号: