| [1] Subramanian M A, Li D, Duan N, et al. High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem., 2000, 151(2): 323-325.[2] Homes C C, Vogt T, Shapiro S M, et al. Optical response of high-dielectric-constant perovskite-related oxide. Science, 2001, 293(5530): 673-676.[3] Sinclair D C, Adams T B, Morrison F D. CaCu3Ti4O12: one-step internal barrier layer capacitor. Appl. Phys. Lett., 2002, 80(12): 2153-2155.[4] Lunkenheimer P, Fichtl R, Ebbinghaus S G, et al. Nonintrinsic origin of the colossal dielectric constants in CCTO. Phys. Rev. B, 2004, 70(17): 172102-1-4. [5] Ramirez A, Subramanian M, Gardel M, et al. Giant dielectric constant response in a copper-titanate. Solid State Comm., 2000, 115(5): 217-220.[6] 周小莉, 杜丕一(ZHOU Xiao-Li, et al). CaCu3Ti4O12的制备及其对巨介电性能的影响. 无机材料学报(Journal of Inorganic Materials), 2005, 20(2): 484-488.[7] 杨 雁, 李盛涛(YANG Yan, et al.). 共沉淀法制备CaCu3Ti4O12陶瓷. 无机材料学报(Journal of Inorganic Materials), 2010, 25(8): 835-839.[8] Adams T B, Sinclair D C, West A R. Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics. Adv. Mater., 2002, 14(18): 1321-1323.[9] Zhang L, Tang Z J. Polaron relaxation and variable-range-hopping conductivity in the giant-dielectric-constant material CaCu3Ti4O12. Phys. Rev. B, 2004, 70(17): 174306-1-6.[10] Zhang J L, Zheng P, Wang C L, et al. Dielectric dispersion of CaCu3Ti4O12 ceramics at high temperatures. Appl. Phys. Lett., 2005, 87(14): 142901-1-3.[11] Ke S M, Huang H T, Fan H Q. Relaxor behavior in CaCu3Ti4O12 ceramics. Appl. Phys. Lett., 2006, 89(18): 182904-1-3.[12] Ni L, Chen X M. Dielectric relaxations and formation mechanism of giant dielectric constant step in CaCu3Ti4O12 ceramics. Appl. Phys. Lett., 2007, 91(12): 122905-1-3.[13] Yu H T, Liu H X, Hao H, et al. Grain size dependence of relaxor behavior in CaCu3Ti4O12 ceramics. Appl. Phys. Lett., 2007, 91(22): 222911-1-3.[14] Liu Y, Withers R L, Wei X Y. Structurally frustrated relaxor ferroelectric behavior in CaCu3Ti4O12. Phys. Rev. B, 2005, 72(13): 134104-1-4.[15] Adams T B, Sinclair D C, West A R. Characterization of grain boundary impedances in fine- and coarse-grained CaCu3Ti4O12 ceramics. Phys. Rev. B, 2006, 73(9): 094124-1-9.[16] Cohen M H, Neaton J B, He L, et al. Extrinsic models for the dielectric response of CaCu3Ti4O12. J. Appl. Phys., 2003, 94(5): 3299-3306.[17] Chung S Y, Kim I D, Kang S J L. Strong nonlinear current-voltage behaviour in perovskite-derivative calcium copper titanate. Nat. Mater., 2004, 3(11): 774-778.[18] Liu J J, Duan C G, Mei W N. Dielectric properties and Maxwell-Wagner relaxation of compounds ACu3Ti4O12 (A=Ca, Bi2/3, Y2/3, La2/3). J. Appl. Phys., 2005, 98(9): 093703-1-5.[19] Ferrarelli M C, Sinclair D C, Derek C, et al. Comment on the origin(s) of the giant permittivity effect in CaCu3Ti4O12 single crystals and ceramics. J. Mater. Chem., 2009, 19(33): 5916-5919.[20] Li M, Shen Z J, Nygren M, et al. Origin(s) of the apparent high permittivity in CaCu3Ti4O12 ceramics: clarification on the contributions from internal barrier layer capacitor and sample-electrode contact effects. J. Appl. Phys., 2009, 106(10): 104106-1-8.[21] Li W, Schwartz R W. Maxwell-Wagner relaxations and their contributions to the high permittivity of calcium copper titanate ceramics. Phys. Rev. B, 2007, 75(1): 012104-1-4.[22] Fang T T, Shiau H K. Mechanism for developing the boundary barrier layer of CaCu3Ti4O12. J Am. Ceram. Soc., 2004, 87(11): 2072-2099.[23] Shao S F, Zhang J L, Zheng P, et al. Microstructure and electrical properties of CaCu3Ti4O12 ceramics. J. Appl. Phys., 2006, 99(8): 084106-1-11.[24] Zhang L. Electrode and grain-boundary effects on the conductivity of CaCu3Ti4O12. Appl. Phys. Lett. 2005, 87(2): 022907-1-3.[25] Krohns S, Lunkenheimer P, Ebbinghaus S G, et al. Broadband dielectric spectroscopy on single-crystalline and ceramic CaCu3Ti4O12. Appl. Phys. Lett., 2007, 91(2): 022910-1-3.[26] Krohns S, Lunkenheimer P, Ebbinghaus S G, et al. Colossal dielectric constants in single-crystalline and ceramic CaCu3Ti4O12 investigated by broadband dielectric spectroscopy. J. Appl. Phys., 2008, 103(8): 084107-1-9.[27] Wang C C, Zhang L W. Surface-layer effect in CaCu3Ti4O12. Appl. Phys. Lett., 2006, 88(4): 042906-1-3.[28] Prakash B S, Varma K B R. Influence of sintering conditions and doping on the dielectric relaxation originating from the surface layer effects in CaCu3Ti4O12 ceramics. J. Phys. Chem. Solids, 2007, 68(4): 490-502.[29] Bender B A, Pan M J. The effect of processing on the giant dielectric properties of CaCu3Ti4O12. Mater. Sci. Eng. B, 2005, 117(3): 339-347. [30] Sze S M. Physics of Semiconductor Devices, 2nd ed. New York: Wiley-Interscience, 1981: 251.[31] Li M, Feteira A, Sinclair D C, et al. Influence of Mn doping on the semiconducting properties of CaCu3Ti4O12 ceramics. Appl. Phys. Lett., 2006, 88(23): 232903-1-3.[32] Li J, Subramanian M A, Rosenfeld H D, et al. Clues to the giant dielectric constant of CaCu3Ti4O12 in the defect structure of SrCu3Ti4O12. Chem. Mater., 2004, 16(25): 5223-5225.[33] Capsoni D, Bini M, Massarotti V, et al. Role of doping and CuO segregation in improving the giant permittivity of CaCu3Ti4O12. J. Solid State Chem., 2004, 177(12): 4494-4500.[34] Fang T T, Mei L T, Ho H F. Effects of Cu stoichiometry on the microstructure, barrier-layer structures, electrical conduction, dielectric responses, and stability of CaCu3Ti4O12. Acta. Mater., 2006, 54(10): 2867-2875. |