无机材料学报 ›› 2020, Vol. 35 ›› Issue (12): 1391-1397.DOI: 10.15541/jim20200139 CSTR: 32189.14.10.15541/jim20200139
所属专题: 功能材料论文精选(二):发光材料(2020)
收稿日期:
2020-03-17
出版日期:
2020-12-20
网络出版日期:
2020-06-15
作者简介:
陈 磊(1995–), 女, 硕士研究生. E-mail: 20174220040@stu.suda.edu.cn
CHEN Lei(),CHEN Lanhua,ZHANG Yugang,XIE Jian,DIWU Juan(
)
Received:
2020-03-17
Published:
2020-12-20
Online:
2020-06-15
About author:
CHEN Lei (1995–), female, Master candidate. E-mail: 20174220040@stu.suda.edu.cn
Supported by:
摘要:
灵敏的UV探测对于工业生产和个人防护非常重要, 本研究旨在开发新型UV探测材料。一般而言, 铀酰单元具有相对高的UV吸收效率和荧光强度。本课题组成功地在水热条件下制备了一例铀酰配位聚合物[(TEA)2(UO2)5(PhPC)6] (TEA = 四乙基胺离子, PhPC = (2-羧基乙基)苯膦酸, 标记为UPhPC-1)。基于单晶XRD数据的结构分析表明UPhPC-1中有三个不同的铀酰中心, 其中两个铀酰单元为五角双锥构型, 而第三个铀酰单元为四角双锥构型。全部三个铀酰中心与配体在[bc]平面配位形成无限的铀酰层。通过氢键网格和π-π相互作用, 这些铀酰层堆积成整体的层状结构。此化合物具有很好的热稳定性、水稳定性和高抗辐照能力。UV辐照实验结果表明UPhPC-1的本征荧光强度对365 nm的UV辐射高度敏感, 检测下限低且响应速率快, 而发光强度与UV辐照剂量呈负相关。电子顺磁共振谱分析证实在UV光照射下, UPhPC-1中极有可能产生自由基, 造成铀酰荧光部分淬灭。进一步, 被淬灭样品中的自由基能够在加热后被去除, 从而实现UPhPC-1发光强度的快捷恢复。目前的结果表明UPhPC-1在UV辐照的定量探测领域具有一定的发展潜力。
中图分类号:
陈磊, 陈兰花, 张瑜港, 谢健, 第五娟. 具有UV探测灵敏性、稳定性和重复利用性的层状铀酰配位聚合物研究[J]. 无机材料学报, 2020, 35(12): 1391-1397.
CHEN Lei, CHEN Lanhua, ZHANG Yugang, XIE Jian, DIWU Juan. A Layered Uranyl Coordination Polymer with UV Detection Sensitivity, Stability, and Reusability[J]. Journal of Inorganic Materials, 2020, 35(12): 1391-1397.
Formula | [N(C2H5)4]2(UO2)5[C6H5PO2C2COO]6 |
---|---|
Mr/(g?mol-1) | 2883.45 |
Color and habit | Yellow, block |
Crystal system | Triclinic |
Space group | $P \overline 1$ |
a/nm | 1.0802(4) |
b/nm | 1.2288(5) |
c/nm | 1.7544(5) |
α/(°) | 86.856(13) |
β/(°) | 78.009(10) |
γ/(°) | 86.530(18) |
V/nm3 | 2.2714(15) |
Z | 1 |
ρ calcd/(g?cm-3) | 2.108 |
T/K | 298 |
R(F) for Fo2 > 2σ(Fo2)a | 0.0322 |
Rw(Fo2)b | 0.0816 |
aR(F)= ∑|| Fo| - |Fc||/∑|Fo| | bRw(Fo2)=[∑[w(Fo2 - Fc2)2]/∑wFo4]1/2 |
Table S1 Crystallographic data of UPhPC-1 (CCDC No. 1978001)
Formula | [N(C2H5)4]2(UO2)5[C6H5PO2C2COO]6 |
---|---|
Mr/(g?mol-1) | 2883.45 |
Color and habit | Yellow, block |
Crystal system | Triclinic |
Space group | $P \overline 1$ |
a/nm | 1.0802(4) |
b/nm | 1.2288(5) |
c/nm | 1.7544(5) |
α/(°) | 86.856(13) |
β/(°) | 78.009(10) |
γ/(°) | 86.530(18) |
V/nm3 | 2.2714(15) |
Z | 1 |
ρ calcd/(g?cm-3) | 2.108 |
T/K | 298 |
R(F) for Fo2 > 2σ(Fo2)a | 0.0322 |
Rw(Fo2)b | 0.0816 |
aR(F)= ∑|| Fo| - |Fc||/∑|Fo| | bRw(Fo2)=[∑[w(Fo2 - Fc2)2]/∑wFo4]1/2 |
Content/% | Peak area | Daily factor | |
---|---|---|---|
N | 0.0832 | 929 | 0.9751 |
C | 28.68 | 20169 | 0.9846 |
H | 3.409 | 6670 | 0.9800 |
Table S2 The elemental analyses of UPhPC-1
Content/% | Peak area | Daily factor | |
---|---|---|---|
N | 0.0832 | 929 | 0.9751 |
C | 28.68 | 20169 | 0.9846 |
H | 3.409 | 6670 | 0.9800 |
Fig. 2 Luminescence spectra (a) of UPhPC-1 with increasing doses of UV radiation, correlation between the quenching ratio and the UV radiation dose (b) (measured at 516 nm), and corresponding photographs (c) of the single crystal under continuous UV irradiation The inset is the linear fitting of the point data in the low dose range (0-0.028 mJ)
Fig. 3 Photoluminescence spectra (a) of UPhPC-1 before and after X-ray irradiation, EPR spectra (b) of UPhPC-1 before and after UV and X-ray irradiation, luminescence intensities (c) of UPhPC-1 before and after UV irradiation, and after the heating recovery process
[1] | GINER TORRES S, MONTANES N, FENOLLAR O, et al. Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Mater. Design, 2016,108:648-658. |
[2] |
YUE WU, HE RIAN, YAO PING-JIA, et al. Ultraviolet radiation- induced accelerated degradation of chitosan by ozone treatment. Carbohyd. Polym., 2009,77(3):639-642.
DOI URL |
[3] |
WESTERHOF W, NIEUWEBOER KROBOTOVA L. Treatment of vitiligo with UV-B radiation vs topical psoralen plus UV-A. Arch. Dermatol., 1997,133(12):1525-1528.
URL PMID |
[4] |
NERANDZIC M MICHELLE, CADNUM L JENNIFER, PULTZ J MICHAEL, et al. Evaluation of an automated ultraviolet radiation device for decontamination of clostridium difficile and other healthcare-associated pathogens in hospital rooms. BMC Infect. Dis., 2010,10:197.
URL PMID |
[5] |
NARAYANAN L DEEVYA, SALADI N RAO, FOX L J, et al. Ultraviolet radiation and skin cancer. Int. J. Dermatol., 2010,49(9):978-986.
DOI URL PMID |
[6] |
MANCEBO E SILVIA, WANG Q STEVEN. Skin cancer: role of ultraviolet radiation in carcinogenesis. Rev. Environ. Health, 2014,29(3):265-273.
DOI URL PMID |
[7] |
SCHOLZE F, KLEIN R, MULLER R. Characterization of detectors for extreme UV radiation. Metrologia., 2006,43:S6-S10.
DOI URL |
[8] | FRITZ G GILBERT, WOOD S KENT, VECHTEN VAN DEBORAH, et al. Thermoelectric single-photon detectors for X-ray/UV radiation. X-Ray and Gamma-Ray Instrumentation for Astronomy XI. International Society for Optics and Photonics, 2000,4140:459-469. |
[9] |
HE CHENG, WU XIAO, KONG JI-CHUAN, et al. A hexanuclear gadolinium-organic octahedron as a sensitive MRI contrast agent for selectively imaging glucosamine in aqueous media. Chem. Commun., 2012,48:9290-9292.
DOI URL |
[10] |
MONROY E, VIGUÉ F, CALLE F, et al. Time response analysis of ZnSe-based Schottky barrier photodetectors. Appl. Phys. Lett., 2000,77:2761-2763.
DOI URL |
[11] |
FABBRIZZI LUIGI, LICCHELLI MAURIZIO, RABAIOLI GIULIANO, et al. The design of luminescent sensors for anions and ionisable analytes. Coordin. Chem. Rev., 2000,205(1):85-108.
DOI URL |
[12] |
INUKAI M, TAMURA M, HORIKE S, et al. Storage of CO2 into porous coordination polymer controlled by molecular rotor dynamics. Angew. Chem. Int. Ed., 2018,57(28):8687-8690.
DOI URL |
[13] |
DU YA, YANG HAI-SHEN, WAN SHUN, et al. A titanium-based porous coordination polymer as a catalyst for chemical fixation of CO2. J. Mater. Chem. A, 2017,5(19):9163-9168.
DOI URL |
[14] |
CUI JING-WANG, HOU SUO-XIA, LI YUE-HUA, et al. A multifunctional Ni(ii) coordination polymer: synthesis, crystal structure and applications as a luminescent sensor, electrochemical probe, and photocatalyst. Dalton Trans, 2017,46(48):16911-16924.
DOI URL PMID |
[15] |
NOVIO F, SIMMCHEN J, VÁZQUEZ-MERA N, et al. Coordination polymer nanoparticles in medicine. Coord. Chem. Rev., 2013,257(19/20):2839-2847.
DOI URL |
[16] |
LI HAI-YANG, XU HONG, ZANG SHUANG-QUAN, et al. A viologen-functionalized chiral Eu-MOF as a platform for multifunctional switchable material. Chem. Commun., 2016,52(3):525-528.
DOI URL |
[17] |
HU SHU-ZHI, ZHANG JIE, CHEN SHU-HUANG, et al. Efficient ultraviolet light detector based on a crystalline viologen-based metal-organic framework with rapid visible color change under irradiation. ACS Appl. Mater. Inter., 2017,9(46):39926-39929.
DOI URL |
[18] |
ZHANG YING-MU, YUAN SHUAI, DAY GREGORY, et al. Luminescent sensors based on metal-organic frameworks. Coord. Chem. Rev., 2018,354:28-45.
DOI URL |
[19] |
WANG YA-XING, YIN XUE-MIAO, WANG SHU-AO, et al. Emergence of uranium as a distinct metal center for building intrinsic X-ray scintillators. Angew. Chem. Int. Ed., 2018,57(26):7883-7887.
DOI URL |
[20] |
PARKER DAVID, DICKINS S RACHEL, PUSCHMANN HORST, et al. Being excited by lanthanide coordination complexes: aqua species, chirality, excited-state chemistry, and exchange dynamics. Chem. Rev., 2002,102(6):1977-2010.
DOI URL PMID |
[21] |
LI FEI-ZE, MEI LEI, SHI WEI-QUN, et al. Uranyl compounds involving a weakly bonded pseudorotaxane linker: combined effect of pH and competing ligands on uranyl coordination and speciation. Inorg. Chem., 2019,58(5):3271-3282.
DOI URL PMID |
[22] |
ZHAO RAN, MEI LEI, SHI WEI-QUN, et al. Bimetallic uranyl organic frameworks supported by transition-metal-ion-based metalloligand motifs: synthesis, structure diversity, and luminescence properties. Inorg. Chem., 2018,57(10):6084-6094.
DOI URL PMID |
[23] |
MEI LEI, WU QUN-YAN, SHI WEI-QUN, et al. Silver ion-mediated heterometallic three-fold interpenetrating uranyl-organic framework. Inorg. Chem., 2015,54(22):10934-10945.
DOI URL PMID |
[24] |
LIU WEI, SONG EN-HAI, WANG SHU-AO, et al. Introducing uranium as the activator toward highly stable narrow-band green emitters with near-unity quantum efficiency. Chem. Mater., 2019,31:9684-9690.
DOI URL |
[25] |
WU XU-MENG, WANG HONG-QING, WANG XIANG-KE, et al. Sensors for determination of uranium: a review. Trends in Analytical Chemistry, 2019,118:89-111.
DOI URL |
[26] |
GUI DA-XIANG, DUAN WAN-CHUN, WANG SHU-AO, et al. Persistent superprotonic conductivity in the order of 10-1 S·cm-1 achieved through thermally induced structural transformation of a uranyl coordination polymer. CCS Chem., 2019,1(2):197-206.
DOI URL |
[27] |
LI JIE, WANG XIANG-YUE, WANG XIANG-KE, et al. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev., 2018,47(7):2322-2356.
DOI URL PMID |
[28] |
WANG LIN, LI ZIJIE, SHI WEI-QUN, et al. Layered structure- based materials: challenges and opportunities for radionuclide sequestration. Environ. Sci.: Nano, 2020,7(3):724-752.
DOI URL |
[29] |
WANG XIANG-XUE, SHI WEI-QUN, WANG XIANG-KE, et al. Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. SCI. China Chem., 2019,62(8):933-967.
DOI URL |
[30] |
YIN XUE-MIAO, WANG YA-XING, WANG SHU-AO, et al. Competing crystallization between lanthanide and actinide in acidic solution leading to their efficient separation. Chin. J. Chem., 2019,37(1):53-57.
DOI URL |
[31] |
WANG YAN-LONG, LIU ZHI-YONG, WANG SHU-AO, et al. Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions. J. Am. Chem. Soc., 2015,137(19):6144-6147.
DOI URL PMID |
[32] |
XIE JIAN, WANG YA-XING, LIU WEI, et al. Highly sensitive detection of ionizing radiations by a photoluminescent uranyl organic framework. Angew. Chem. Int. Ed., 2017,56(26):7500-7504.
DOI URL |
[33] |
LIU WEI, DAI XING, XIE JIAN, et al. Highly sensitive detection of UV radiation using a uranium coordination polymer. ACS Appl. Mater. Inter., 2018,10(5):4844-4850.
DOI URL |
[34] |
XIE JIAN, WANG YA-XING, WANG SHU-AO, et al. Photo- exfoliation of a highly photo-responsive two-dimensional metal- organic framework. Chem. Commun., 2019,55(78):11715-11718.
DOI URL |
[35] | ZHENG TAO, YANG ZAI-XING, GUI DA-XIANG, et al. Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system. Nat. Commun., 2017,8(1):15369. |
[36] |
GUI DA-XIANG, ZHENG TAO, CHEN LAN-HUA, et al. Hydrolytically stable nanoporous thorium mixed phosphite and pyrophosphate framework generated from redox-active ionothermal reactions. Inorg. Chem., 2016,55(8):3721-3723.
DOI URL PMID |
[37] | TIAN TAO, YANG WEI-TING, SUN ZHONG-MING, et al. Syntheses and structures of uranyl ethylenediphosphonates: from layers to elliptical nanochannels. Inorg. Chem., 2013,52(12):7100-7106. |
[38] | YANG WEI-TING, TIAN WAN-GUO, SUN ZHONG-MING, et al. Syntheses, structures, luminescence, and photocatalytic properties of a series of uranyl coordination polymers. Cryst. Growth Des., 2014,14(11):5904-5911. |
[39] | YANG WEI-TING, PARKER GANNON T, SUN ZHONG-MING. Structural chemistry of uranium phosphonates. Coord. Chem. Rev., 2015,303:86-109. |
[40] | LAN WEN-TING, HE LI, LIU YAO-WEN. Preparation and properties of sodium carboxymethyl cellulose/sodium alginate/chitosan composite film. Coatings, 2018,8(8):291. |
[41] |
LAWRIE GWEN, KEEN IMELDA, DREW BARRY, et al. Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules, 2007,8(8):2533-2541.
DOI URL PMID |
[42] | POLJANŠEK IDA, KRAJNC MATJAŽ. Characterization of phenol- formaldehyde prepolymer resins by in line FT-IR spectroscopy. Acta. Chim. Slov., 2005,52:238-244. |
[43] |
WANG YA-XING, LIU XIN, WANG SHU-AO, et al. Direct radiation detection by a semiconductive metal-organic framework. J. Am. Chem. Soc., 2019,141(20):8030-8034.
DOI URL PMID |
[44] | COZACIUC ANDREEA IRINA, POSTOLACHI RODICA, GRADINARU ROBERT, et al. Synthesis and characterization of uranyl (VI) chiral Schiff-base complexes derived from salicylaldehyde and L-aminoacids. J. Coord. Chem., 2012,65(12):2170-2181. |
[45] | YANG WEI-TING, WANG HAO, SUN ZHONG-MING, et al. The first family of actinide carboxyphosphinates: two and three- dimensional uranyl coordination polymers. Eur. J. Inorg. Chem., 2014,2014(31):5378-5384. |
[46] |
YANG WEI-TING, WU DAI, SUN ZHONG-MING, et al. Structural variations of the first family of heterometallic uranyl carboxyphosphinate assemblies by synergy between carboxyphosphinate and imidazole ligands. Cryst. Growth Des., 2016,16(4):2011-2018.
DOI URL |
[47] | YANG WEI-TING, WANG HAO, SUN ZHONG-MING, et al. Isolation of a series of uranium organophosphinates. Cryst. Eng. Comm., 2014,16(34):8073-8080. |
[48] |
ZHANG YU-GANG, CHEN LAN-HUA, GUAN JING-WEN, et al. A unique uranyl framework containing uranyl pentamers as secondary building units: synthesis, structure, and spectroscopic properties. Dalton Trans., 2020,49:3676-3679.
DOI URL PMID |
[49] | RSTENSEN PETERCA. Free radicals in diene polymers induced by ultraviolet irradiation. II. an ESR study of cis-1.4-poly(butadiene). Die Makromolekulare Chemie: Macromol. Chem. and Phys., 1971,142(1):131-144. |
[50] | ZHANG XIAN, WANG SHENG-MING, SUN CAI, et al. Stabilizing and color tuning pyrazine radicals by coordination for photochromism. Chem. Commun., 2016,52(51):7947-7949. |
[51] | WANG SHENG-MING, XU GANG, ZHANG ZHANGJ-ING, et al. Inorganic-organic hybrid photochromic materials. Chem. Commun., 2010,46(3):361-376. |
[1] | 王晓丹,徐晓东,臧涛成,马春兰,赵志伟,徐 军. Nd∶Lu3Al5O12晶体的生长与光谱性能研究[J]. 无机材料学报, 2010, 25(4): 435-440. |
[2] | 鲁圣国,李标荣,麦炽良,黄健洪. 铁电纳米材料的制备、性能和应用前景[J]. 无机材料学报, 2004, 19(6): 1231-1239. |
[3] | 卓尚军,陶光仪,吉昂,盛成,申如香. X射线荧光光谱在晶体材料组成分析中的应用[J]. 无机材料学报, 2003, 18(1): 19-26. |
[4] | 黄立辉,刘行仁,王晓君,郑著宏. M3MgSi2O8(M=Sr,Ba)中Ce3+的发光性质[J]. 无机材料学报, 1999, 14(2): 317-320. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||