[1] |
LI L D, YAN J Q, WANG T, et al.Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production.Nature Communications, 2015, DOI: 10.1038/ncomms6881.
|
[2] |
JIANG X, QIN X, GONG M, et al.Improvement of surface- enhanced Raman scattering properties of TiO2 nanoparticles by metal Ni doping.Chemical Journal of Chinese Universities-Chinese, 2014, 35(3): 488-492.
|
[3] |
XIAO Q, SI Z, ZHANG J, et al.Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline.Journal of Hazardous Materials, 2008, 150(1): 62-67.
|
[4] |
SU X, WU Q L, ZHAN X, et al.Advanced titania nanostructures and composites for lithium ion battery.Journal of Materials Science, 2012, 47(6): 2519-2534.
|
[5] |
INNOCENZI P, MARTUCCI A, ARMELAO L, et al.Sol-Gel synthesis of beta-Al2TiO5 thin films at low temperature.Chemistry of Materials, 2000, 12(2): 517-524.
|
[6] |
NAGANO M, NAGASHIMA S, MAEDA H, et al.Sintering behavior of Al2TiO5 base ceramics and their thermal properties.Ceramics International, 1999, 25(8): 681-687.
|
[7] |
CUI H Z, XU G G, GE C L, et al.Synthesis of porous Al2TiO5 ceramic by reaction sintering method.Journal of the Ceramic Society of Japan, 2012, 120(1406): 413-416.
|
[8] |
SKALA R D, LI D, LOW I M.Diffraction, structure and phase stability studies on aluminium titanate.Journal of the European Ceramic Society, 2009, 29(1): 67-75.
|
[9] |
BRUNO G, EFREMOV A, WHEATON B, et al.Micro- and macroscopic thermal expansion of stabilized aluminum titanate.Journal of the European Ceramic Society, 2010, 30(12): 2555-2562.
|
[10] |
MONA J, KALE S N, GAIKWAD A B, et al.Chemical methods to synthesize FeTiO3 powders.Materials Letters, 2006, 60(11): 1425-1427.
|
[11] |
TRUONG Q D, LIU J Y, CHUNG C C, et al.Photocatalytic reduction of CO2 on FeTiO3/TiO2 photocatalyst.Catalysis Communications, 2012, 19: 85-89.
|
[12] |
ZHANG X B, LI T T, GONG Z Q, et al.Shape controlled FeTiO3 nanostructures: crystal facet and photocatalytic property.Journal of Alloys and Compounds, 2015, 653: 619-623.
|
[13] |
ZHU CH C, ZHANG X H, HE X D. Self-propagating high- temperature synthesis of TiC-TiB2/Cu ceramic-matrix composite. Journal of Inorganic Materials, 2003(4): 872-878.
|
[14] |
ZHANG T A, DOU ZH H. Growth mechanism of TiB2 powder prepared by SHS-metallurgy. Journal of Inorganic Materials, 2006(3): 583-590.
|
[15] |
LIANG L P, LIU Y C, WANG J H. Development prospect of self-propagating high temperature synthesis. Applied Chemical Industry, 2006(9): 716-718.
|
[16] |
LU Y, ZHU Z P, LIU Z Y.Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene.Carbon, 2005, 43(2): 369-374.
|
[17] |
LUO N, LI X J, LIU K X, et al. Preparation of carbon-coated copper nanoparticles by detonation decomposition of copper ion doped sol-gel explosive precursors. Journal of Nanoparticle Research, 2013, 15(5): 1614-1-9.
|
[18] |
LI X J, QU Y D, YAN H H, et al. Research progress on nanosized materials synthesized by detonation dethod. Rare Metal Materials and Engineering, 2007(12): 2069-2074.
|
[19] |
LUO N, LI X J, WANG X H, et al.Synthesis of carbon-encapsulated metal nanoparticles by a detonation method.Combustion Explosion and Shock Waves, 2010, 46(5): 609-613.
|
[20] |
YAN H H, ZHAO T J, LI X J, et al.Detonation synthesis and friction-wear test of carbon-encapsulated copper nanoparticles.Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25(6): 1569-1575.
|
[21] |
QU Y D, KONG X Q, LI X J, et al. Effect of thermal treatment on the structural phase transformation of the detonation-prepared TiO2 mixed crystal nanoparticles. Acta Physica Sinica, 2014, 63(3): 037301-1-72.
|
[22] |
YAN H H, ZHAO T J, LI X J, et al.Synthesis of Cu-doped nano-TiO2 by detonation method.Ceramics International, 2015, 41(10): 14204-14211.
|
[23] |
YAN H H, WU L S, LI X J, et al.Detonation synthesis of SnO2 nanoparticles in gas phase.Rare Metal Materials and Engineering, 2013, 42(7): 1325-1327.
|
[24] |
DOLMATOV V Y.Detonation synthesis ultradispersed diamonds: properties and applications.Uspekhi Khimii, 2001, 70(7): 687-708.
|
[25] |
OLEINIK G S, BOCHECHKA A A.On the mechanism of forming nanosized particles of diamond detonation synthesized from explosive decomposition products.Journal of Superhard Materials, 2008, 30(3): 143-162.
|
[26] |
YAN H, ZHAO T, LI X, et al.Hydrogen and air detonation (deflagration) synthesis of carbon-encapsulated iron nanoparticles.Combustion Explosion and Shock Waves, 2015, 51(4): 495-501.
|
[27] |
DURGUTLU A, GULENC B, FINDIK F.Examination of copper/stainless steel joints formed by explosive welding.Materials & Design, 2005, 26(6): 497-507.
|
[28] |
LOUREIRO A, MENDES R, RIBEIRO J B, et al.Effect of explosive mixture on quality of explosive welds of copper to aluminium.Materials & Design, 2016, 95: 256-267.
|
[29] |
SUGIMOTO T, ZHOU X.Synthesis of uniform anatase TiO2 nanoparticles by the Sol-Gel method 2. Adsorption of OH- ions to Ti (OH)4 gel and TiO2 particles.J. Colloid Interface Sci., 2002, 252(2): 347-353.
|
[30] |
SUGIMOTO T, ZHOU X, MURAMATSU A.Synthesis of uniform anatase TiO2 nanoparticles by Gel-Sol method. 1. Solution chemistry of Ti (OH) (4-n)+ (n) complexes.J. Colloid Interface Sci., 2002, 252(2): 339-346.
|
[31] |
LUO N, LI X J, WANG X H, et al.Synthesis and characterization of carbon-encapsulated iron/iron carbide nanoparticles by a detonation method.Carbon, 2010, 48(13): 3858-3863.
|
[32] |
SUN G L, LI X J, WANG Q Q, et al.Synthesis of carbon-coated iron nanoparticles by detonation technique.Materials Research Bulletin, 2010, 45(5): 519-522.
|