[1] NING Y, CHEN Y, ZHANG J,et al. Brief review of development and techniques for high power semiconductor lasers. Acta Optica Sinica, 2021, 41(01): 191. [2] LIU X, GONG Q, HUANG C,et al. Crystal growth, property investigation, and the deactivation effect of Tb3+ in Dy3+/Tb3+ codoped LiYF4 crystals: promising crystals for all-solid-state yellow lasers. Crystal Growth & Design, 2024, 24(9): 3699. [3] ZHAO C, ZHANG P, LI S,et al. Development of rare-earth ion doped fluoride laser crystal. Journal of Synthetic Crystals, 2022, 51(Z1): 1573. [4] SOTTILE A, METZ P W.Deep red diode-pumped Pr3+:KY3F10 continuous-wave laser.Optics Letters, 2015, 40(9): 1992. [5] KRäNKEL C, METZ P W, HUBER G. Continuous Wave and Wavelength Tunable Green Tb3+:CaF2 Laser. Lasers Congress 2016, Boston, Massachusetts, 2016: AM3A.2. [6] LIU Z, XU X, JIANG Y,et al. Research progress of terbium-doped fluoride crystal visible light laser. Chinese Journal of Luminescence, 2024, 45(11): 1871. [7] BADTKE M, KALUSNIAK S, TANAKA H,et al. UV-laser-diode-pumped visible Tb3+:LiLuF4 lasers. Optics Letters, 2023, 48(13): 3379. [8] CASTELLANO-HERNáNDEZ E, METZ P W, DEMESH M,et al. Efficient directly emitting high-power Tb3+:LiLuF4 laser operating at 587.5 nm in the yellow range. Optics Letters, 2018, 43(19): 4791. [9] FANG L, ZHOU X, ZHANG J, et al. Control of white light emission via co-doping of Dy3+ and Tb3+ ions in LiLuF4 single crystals under UV excitation. Journal of Materials Science: Materials in Electronics, 2020, 31(4): 3405. [10] LI X W, YANG Y, LU J,et al. Growth and properties of large size lithium terbium fluoride crystal. Journal of Synthetic Crystals, 2023, 52(07): 1352. [11] METZ P W, MARZAHL D T, MAJID A,et al. Efficient continuous wave laser operation of Tb3+ doped fluoride crystals in the green and yellow spectral regions. Laser & Photonics Reviews, 2016, 10(2): 335. [12] ZHANG P, LI S, YANG Y,et al. Growth and performance optimization of mid-infrared fluoride laser crystal. Journal of Synthetic Crystals, 2020, 49(08): 1369. [13] CASTELLANO-HERNáNDEZ E, KALUSNIAK S, METZ P W, et al. Diode-pumped laser operation of Tb3+:LiLuF4 in the green and yellow spectral range. Laser & Photonics Reviews, 2020, 14(2): 1900229. [14] KANNARI F, ISHIKAWA T, TANAKA H,et al. 544-nm Tb3+ doped LiYF4 laser pumped by 488-nm InGaN laser diodes and high peak power operation with cavity-dumped Q-switching. Applied Optics, 2024, 64(1): 83. [15] LIU J, SHI Z, SONG Q,et al. Judd-Ofelt analysis and spectroscopic study of Tb:CaF2 and Tb/Pr:CaF2 co-doped single crystals. Optical Materials, 2020, 108: 110219. [16] METZ P W, MARZAHL D T, HUBER G,et al. Performance and wavelength tuning of green emitting terbium lasers. Opt Express, 2017, 25(5): 5716. [17] STEVENS K T, SCHLICHTING W, FOUNDOS G,et al. Promising materials for high power laser isolators. Laser Technik Journal, 2016, 13(3): 18. [18] JALALI A A, ROGERS E, STEVENS K.Characterization and extinction measurement of potassium terbium fluoride single crystal for high laser power applications.Optics Letters, 2017, 42(5): 899. [19] STAROBOR A V, MIRONOV E A, PALASHOV O V.Thermal lens in magneto-active fluoride crystals.Optical Materials, 2019, 98: 109469. [20] PUES P, BAUR F, SCHWUNG S,et al. Temperature and time-dependent luminescence of single crystals of KTb3F10. Journal of Luminescence, 2020, 227: 117523. [21] VALIEV U V, KARIMOV D N, MA C G,et al. Tb3+ ion optical and magneto-optical properties in the cubic crystals KTb3F10. Materials (Basel), 2022, 15(22): 7999. [22] KARIMOV D N, BUCHINSKAYA I I.Growth of KR3F10 (R = Tb-Er) crystals by the vertical directional crystallization technique. I: optimization of the melt composition for the growth of KTb3F10 and correction of the phase diagram of the KF-TbF3 system. Crystallography Reports, 2021, 66(3): 535. [23] KARIMOV D N, BUCHINSKAYA I I, ARKHAROVA N A,et al. Growth peculiarities and properties of KR3F10 (R = Y, Tb) single crystals. Crystals, 2021, 11(3): 285. [24] LIU G, WU H, HUANG C,et al. Control of melt composition and purity for growth of LiTbF4 crystals by the bridgman method with a Pt crucible sealing technique. ACS Omega, 2025, 10(13): 13073. [25] Lawrence Livermore Laboratory, Potassium Terbium Fluoride Crystal Growth Development for Faraday Rotator Discs Fabrication, California: University of California, 1979: 33. [26] KARIMOV D N, BUCHINSKAYA I I, SOROKIN N I.The relationship between ionic conductivity and structural characteristics of melt-grown KR3F10 (R = Tb, Dy, Ho, Y) single crystals.Zeitschrift für Kristallographie - Crystalline Materials, 2022, 237(10/11/12): 429. [27] TOBY B H, VON DREELE R B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package.Journal of Applied Crystallography, 2013, 46(2): 544. [28] NIU Z, YU B, XU F,et al. Color-tunable luminescence and temperature sensing in Ce3+/Tb3+ co-doped transparent oxyfluoride glass-ceramics containing Na1.5Y2.5F9 nanocrystals. Journal of Luminescence, 2022, 246: 118834. [29] TOCHITSKY S Y, PETUKHOV V O, GOROBETS V A, et al. Efficient continuous-wave frequency doubling of a tunable CO2 laser in AgGaSe2. Appl. Opt., 1997, 36(9): 1882. [30] VASYLIEV V, VíLLORA E G, SUGAHARA Y,et al. Judd-Ofelt analysis and emission quantum efficiency of Tb-fluoride single crystals: LiTbF4 and Tb0.81Ca0.19F2.81. Journal of Applied Physics, 2013, 113(20): 203508. [31] CHEN H, UEHARA H, KAWASE H,et al. Efficient visible laser operation of Tb:LiYF4 and LiTbF4. Optics Express, 2020, 28(8): 10951. [32] GU X, HE Z, SUN X Y,et al. Preparation and luminescence properties of Tb3+ doped garnet Y2Mg2Al2Si2O12 luminescent materials. Luminescence, 2021, 36(3): 834. [33] CHAHAR S, DEVI R, DALAL M,et al. Color tunable nanocrystalline SrGd2Al2O7:Tb3+ phosphor for solid state lighting. Ceramics International, 2019, 45(1): 606. |