无机材料学报

• 研究论文 •    

KTb3F10单晶生长及光谱性能研究

刘国晋1,2, 黄昌保1,3, 余学舟1, 祁华贝1,2, 胡倩倩1,2, 倪友保1,3, 王振友1, 吴海信1   

  1. 1.中国科学院 合肥物质科学研究院安徽光学精密机械研究所,安徽省光子器件与材料重点实验室,合肥 230031;
    2.中国科学技术大学,合肥 230026;
    3.江淮前沿技术协同创新中心,合肥 230000
  • 收稿日期:2025-05-27 修回日期:2025-06-10
  • 作者简介:刘国晋(1995-), 男, 博士研究生. E-mail: lgjustc@mail.ustc.edu.cn
  • 基金资助:
    国家重点研发计划(2021YFB3601503)

Growth and Spectral Properties of KTb3F10 Single Crystal

LIU Guojin1,2, HUANG Changbao1,3, YU Xuezhou1, QI Huabei1,2, HU Qianqian1,2, NI Youbao1,3, WANG Zhenyou1, WU Haixin1   

  1. 1. Anhui Provincial Key Laboratory of Photonic Devices and Material, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China;
    2. University of Science and Technology of China, Hefei 230026, China;
    3. Jianghuai Advanced Technology Center, Hefei 230000, China
  • Received:2025-05-27 Revised:2025-06-10
  • About author:LIU Guojin (1995-), male, PhD candidate. E-mail: lgjustc@mail.ustc.edu.cn
  • Supported by:
    National Key Research and Development Program of China (2021YFB3601503)

摘要: KTb3F10(KTF)晶体具有Tb3+离子浓度高、热光系数小、声子能量低等优点,在绿光和黄光波段展现出高效激光输出潜力。然而,其非一致熔融特性、原料易潮解、高温下组分易挥发以及氟化物的腐蚀性等问题,成为制约高品质KTF晶体生长的关键障碍。本研究致力于探索一种有效的方法,克服上述难题,成功生长出高品质的KTF晶体并系统表征其光学性能。采用优化的垂直布里奇曼法,并结合激光真空密封铂坩埚技术,有效隔绝原料与水氧杂质的接触,同时,密封的生长环境极大地抑制了晶体生长过程中的组分偏离现象。通过该创新工艺,成功生长出尺寸为ϕ16 mm × 30 mm的KTF毛坯晶体。KTF晶体(111)晶面的X射线摇摆曲线半高宽(FWHM)为0.08°,显示出较高的晶体完整性。热重-差热分析(TG-DSC)表明KTF晶体在高温下存在明显的挥发行为。光谱测试显示,KTF晶体在400~1600 nm波段平均透过率>90%,1064 nm处吸收系数<0.007 cm-1,具有较低的光学损耗。Tb3+离子5D4能级荧光寿命约4.82~4.99 ms,较氧化物基质长3~5倍,归因于低声子氟化物基质对非辐射弛豫的抑制。本研究成功建立了一种可行的KTF晶体生长方法,为KTF晶体及同类型的三元氟化物的可控生长提供了一种新的技术路径,为KTF晶体在黄绿光波段的高效输出应用提供了有益参考。

关键词: KTb3F10, 垂直布里奇曼法, 光谱性能, 荧光寿命

Abstract: KTb3F10 (KTF) crystal, characterized by its high Tb3+ ion concentration, low thermo-optic coefficient, and low phonon energy, demonstrates significant potential for efficient laser emission in the green and yellow wavelength ranges. However, challenges such as incongruent melting behavior, hygroscopicity of raw materials, high-temperature compositional volatility, and the corrosive nature of fluorides have severely hindered the growth of high-quality KTF crystals. This study aims to develop an effective approach to address these issues, achieve the growth of high-quality KTF crystals, and systematically characterize their optical properties. An optimized vertical Bridgman method integrated with a laser-sealed platinum crucible technique under vacuum was employed. This innovative approach effectively shielded the raw materials from water and oxygen contamination while suppressing compositional deviation during crystal growth through a sealed environment. As a result, blank KTF crystals with dimensions of ϕ16 mm × 30 mm were successfully grown, and their relevant spectral properties were characterized. The X-ray rocking curve of the (111) plane showed a full width at half maximum (FWHM) of 0.08°, indicating high crystalline perfection. Thermal gravimetric-differential scanning calorimetry (TG-DSC) indicated significant volatilization of KTF at high temperatures. Spectral tests revealed an average transmittance >90% in the 400-1600 nm range, an absorption coefficient <0.007 cm-1 at 1064 nm, demonstrating minimal optical loss suitable for high-power laser applications. The fluorescence lifetime of approximately 4.82-4.99 ms for the Tb3+ ion at the 5D4 energy level, which is 3-5 times longer than that in oxide matrices. This superiority is attributed to the suppression of non-radiative relaxation by the low-phonon fluoride matrix, enhancing the energy storage efficiency for laser emission. This study has successfully established a viable growth method for KTF crystals, providing a new technical pathway for the controllable synthesis of KTF and other ternary fluoride materials. The results offer valuable insights for the high-efficiency application of KTF crystals in yellow-green laser emission.

Key words: KTb3F10, vertical Bridgman method, spectral properties, fluorescence lifetime

中图分类号: