[1] |
XU Z Y. Luminescence mechanism and structure characteristics of long afterglow phosphors. Modern Chemical Research, 2017, 8: 54.
|
[2] |
ZHOU Z H, LI Y Y, PENG M Y. Near-infrared persistent phosphors: synthesis, design, and applications. Chemical Engineering Journal, 2020, 399: 125688.
|
[3] |
HUANG K, LE N, WANG J S, et al. Designing next generation of persistent luminescence: recent advances in uniform persistent luminescence nanoparticles. Advance Materials, 2022, 34(14): 2107962.
|
[4] |
XU J, TANABE S. Persistent luminescence instead of phosphorescence: history, mechanism, and perspective. Journal of Luminescence, 2019, 205: 581.
DOI
URL
|
[5] |
LIN Y H, ZHANG Z T, TANG Z L, et al. The characterization and mechanism of long afterglow in alkaline earth aluminates phosphors co-doped by Eu2O3 and Dy2O3. Materials Chemistry and Physics, 2001, 70: 156.
DOI
URL
|
[6] |
SRIVASTAVA B B, GUPTA S K, LI Y, et al. Bright persistent green emitting water-dispersible Zn2GeO4:Mn nanorods. Dalton Transactions, 2020, 49(22): 7328.
DOI
URL
|
[7] |
SUZUKI V Y, DE PAULA N H, GONCALVES R, et al. Exploring effects of microwave-assisted thermal annealing on optical properties of Zn2GeO4 nanostructured films. Materials Science and Engineering: B, 2019, 246: 7.
DOI
URL
|
[8] |
BAI Q, WANNG Z J, LI P L, et al. Zn2-aGeO4:aRE and Zn2Ge1-aO4:aRE (RE=Ce3+, Eu3+, Tb3+, Dy3+): 4f-4f and 5d-4f transition luminescence of rare earth ions under different substitution. RSC Advances, 2016, 6(104): 102183.
|
[9] |
CHI F F, WEI X T, JIANG B, et al. Luminescence properties and the thermal quenching mechanism of Mn2+ doped Zn2GeO4 long persistent phosphors. Dalton Transactins, 2018, 47(4): 1303.
|
[10] |
LI H, WANG Y H, CHEN S H, et al. Enhanced persistent luminescence of Zn2GeO4 host by Ti4+ doping. Journal of Materials Science: Materials in Electronics, 2017, 28(19): 14827.
DOI
URL
|
[11] |
SHANG M M, LI G G, YANG D M, et al. (Zn, Mg)2GeO4:Mn2+ submicrorods as promising green phosphors for field emission displays: hydrothermal synthesis and luminescence properties. Dalton Transactions, 2011, 40(37): 9379.
DOI
URL
|
[12] |
ANOOP G, KRISHNA M K, JAYARAJ M K, et al. The effect of Mg incorporation on structural and optical properties of Zn2GeO4 :Mn phosphor. Journal of the Electrochemical Society, 2008, 155(1): J7.
DOI
URL
|
[13] |
HE H L, ZHANG Y H, PAN Q W, et al. Controllable synthesis of Zn2GeO4:Eu nanocrystals with multi-color emission for white light-emitting diodes. Journal of Materials Chemistry C, 2015, 3(21): 5419.
DOI
URL
|
[14] |
ZHANG S A, HU Y H, CHEN R, et al. Photoluminescence and persistent luminescence in Bi3+-doped Zn2GeO4 phosphors. Optical Materials, 2014, 36(11): 1830.
DOI
URL
|
[15] |
PENG X L, TANG Z T, LUO Y H, et al. Visual color modulation and luminescence mechanism studies on Mn/Eu co-doped Zn-Mg- Ge-O long afterglow system. Ceramics International, 2020, 46(9): 14005.
DOI
URL
|
[16] |
SHI L X, ZHENG W W, MIAO H Y, et al. Ratiometric persistent luminescence aptasensors for carcinoembryonic antigen detection. Microchimica Acta, 2020, 187(11): 615.
DOI
|
[17] |
GAO D L, MA K W, WANG P, et al. Tuning multicolour emission of Zn2GeO4:Mn phosphors by Li+ doping for information encryption and anti-counterfeiting applications. Dalton Transactions, 2022, 51(2): 553.
DOI
URL
|
[18] |
GAO D L, KUANG Q Q, GAO F, et al. Achieving opto-responsive multimode luminescence in Zn1+xGa2-2xGexO4:Mn persistent phosphors for advanced anti-counterfeiting and information encryption. Materials Today Physics, 2022, 27: 100765.
|
[19] |
LIU Z S, JING X P, WANG L X. Luminescence of native defects in Zn2GeO4. Journal of The Electrochemical Society, 2007, 154(6): 500.
|
[20] |
BANDPAY M G, AMERI F, ANSARI K, et al. Mathematical and empirical evaluation of accuracy of the Kubelka-Munk model for color match prediction of opaque and translucent surface coatings. Journal of Coatings Technology and Research, 2018, 15(5): 1117.
DOI
|
[21] |
LÓPEZ R, GÓMEZ R. Band-gap energy estimation from diffuse reflectance measurements on Sol-Gel and commercial TiO2: a comparative study. Journal of Sol-Gel Science and Technology, 2012, 61(1): 1.
DOI
URL
|
[22] |
MALDINEY T, LECOINTRE A, VIANA B, et al. Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. Journal of the American Chemical Society, 2011, 133(30): 11810.
DOI
URL
|
[23] |
WANG K, YAN L P, SHAO K, et al. Near-infrared afterglow enhancement and trap distribution analysis of silicon-chromium co-doped persistent luminescence materials Zn1+xGa2-2xSixO4:Cr3+. Journal of Inorganic Materials, 2019, 39(9): 983.
|
[24] |
WANG C L, JIN Y H, LÜ Y, et al. Trap distribution tailoring guided design of super-long-persistent phosphor Ba2SiO4:Eu2+, Ho3+ and photostimulable luminescence for optical information storage. Journal of Materials Chemistry C, 2018, 6(22): 6058.
DOI
URL
|
[25] |
MARTINČEK I, TUREK I, TARJÁNYI N. Effect of boundary on refractive index of PDMS. Optical Materials Express, 2014, 4(10): 1997.
DOI
URL
|