无机材料学报 ›› 2019, Vol. 34 ›› Issue (9): 983-990.DOI: 10.15541/jim20180586
收稿日期:
2018-12-17
修回日期:
2019-01-24
出版日期:
2019-09-20
发布日期:
2019-05-29
作者简介:
王 锴(1994-), 男, 硕士研究生. E-mail: 752673535@qq.com
基金资助:
WANG Kai,YAN Li-Ping,SHAO Kang,ZHANG Cong,PAN Zai-Fa()
Received:
2018-12-17
Revised:
2019-01-24
Online:
2019-09-20
Published:
2019-05-29
Supported by:
摘要:
本论文基于硅铬共掺杂, 合成得到了一种尖晶石长余辉材料Zn1+xGa2-2xSixO4:Cr 3+。实验采用高温固相法, 按照设计的化学计量比精确称量ZnO、Ga2O3、SiO2和Cr2O3等原料, 制备了一系列硅铬共掺杂的镓酸锌尖晶石长余辉材料, 其化学式为Zn1+xGa2-2xSixO4:Cr 3+(x=0, 0.1, 0.15, 0.2, 0.5, 1)。实验结果表明: 采用硅铬共掺杂方式后, 引入合适浓度的硅离子可有效改善余辉性能。当x=0.2时, 样品余辉强度最佳, 相比ZnGa2O4:Cr 3+增强了3倍, 并且余辉持续时间长达24 h。进一步的陷阱分布分析表明, 在ZnGa2O4基质基础上引入硅掺杂, 可有效调控不同陷阱深度的分布。即在丰富的反位缺陷基础上, 硅的共掺杂可增加不等价替换缺陷和填隙缺陷等, 并可调控禁带宽度及缺陷形成, 从而实现改善余辉性能的目的。
中图分类号:
王锴, 严丽萍, 邵康, 张聪, 潘再法. 硅铬共掺杂尖晶石长余辉材料Zn1+xGa2-2xSixO4:Cr3+中近红外余辉的增强及陷阱分布分析[J]. 无机材料学报, 2019, 34(9): 983-990.
WANG Kai, YAN Li-Ping, SHAO Kang, ZHANG Cong, PAN Zai-Fa. Near-infrared Afterglow Enhancement and Trap Distribution Analysis of Silicon-chromium Co-doped Persistent Luminescence Materials Zn1+xGa2-2xSixO4:Cr3+[J]. Journal of Inorganic Materials, 2019, 34(9): 983-990.
Sample | x | Chemical components |
---|---|---|
ZGO1 | 0 | ZnGa2O4: Cr3+ |
ZGSiO2 | 0.1 | Zn1.1Ga1.8Si0.1O4: Cr3+ |
ZGSiO3 | 0.15 | Zn1.15Ga1.7Si0.15O4:Cr3+ |
ZGSiO4 | 0.2 | Zn1.2Ga1.6Si0.2O4: Cr3+ |
ZGSiO5 | 0.5 | Zn1.5GaSi0.5O4: Cr3+ |
ZSiO6 | 1 | Zn2SiO4: Cr3+ |
表1 硅铬共掺杂长余辉材料的化学组成
Table 1 Chemical composition of silicon-chromium co-doped persistent luminescent material
Sample | x | Chemical components |
---|---|---|
ZGO1 | 0 | ZnGa2O4: Cr3+ |
ZGSiO2 | 0.1 | Zn1.1Ga1.8Si0.1O4: Cr3+ |
ZGSiO3 | 0.15 | Zn1.15Ga1.7Si0.15O4:Cr3+ |
ZGSiO4 | 0.2 | Zn1.2Ga1.6Si0.2O4: Cr3+ |
ZGSiO5 | 0.5 | Zn1.5GaSi0.5O4: Cr3+ |
ZSiO6 | 1 | Zn2SiO4: Cr3+ |
图3 ZGSiO系列样品漫反射吸收光谱图(a)和${{(h\nu \times F({{R}_{\infty }}))}^{2}}-h\nu$曲线(b)(以切线与x轴截距估算带隙能量)
Fig. 3 Diffuse reflection absorption spectra (a) and ${{(h\nu \times F({{R}_{\infty }}))}^{2}}-h\nu $ diagram (b) of ZGSiO series samples (band gap energy is estimated by intercept of the tangential)
Trap Type | Type Ⅰ | Type Ⅱ | |||
---|---|---|---|---|---|
Temperature/K | Depth/eV | Temperature/K | Depth/eV | ||
ZGO1 | 357 | 0.71 | 420 | 0.84 | |
ZGSiO2 | 353 | 0.71 | 414 | 0.83 | |
ZGSiO3 | 356 | 0.71 | 415 | 0.83 | |
ZGSiO4 | 355 | 0.71 | 417 | 0.83 | |
ZGSiO5 | 354 | 0.71 | 411 | 0.82 |
表2 ZGSiO系列样品TL峰的陷阱深度
Table 2 Trap depths of TL peaks of ZGSiO series samples
Trap Type | Type Ⅰ | Type Ⅱ | |||
---|---|---|---|---|---|
Temperature/K | Depth/eV | Temperature/K | Depth/eV | ||
ZGO1 | 357 | 0.71 | 420 | 0.84 | |
ZGSiO2 | 353 | 0.71 | 414 | 0.83 | |
ZGSiO3 | 356 | 0.71 | 415 | 0.83 | |
ZGSiO4 | 355 | 0.71 | 417 | 0.83 | |
ZGSiO5 | 354 | 0.71 | 411 | 0.82 |
图8 不同清空温度处理后ZGSiO4样品的热释发光曲线(a)(加热速率, 20 K/min)和热释曲线的初始上升法分析(b)
Fig. 8 TL curves (a) (heating rate, 20 K/min) and initial rise analysis of TL curves (b) of ZGSiO4 sample after treatment at different emptying temperatures
图9 ZGSiO4样品在氙灯激发10 min后不同延迟时间下的热释衰减曲线(a)和陷阱密度-时间分布(b)
Fig. 9 TL curves (a) and trap density-time distribution (b) of ZGSiO4 sample at different delay time after 10 min excitation of xenon lamp
[1] | LI Y, GECEVICIUS M, QIU J R . Long persistent phosphors-from fundamentals to applications. Chemical Society Reviews, 2016,45(8):2090-2136. |
[2] | WU S L, PAN Z F, CHEN R F , et al. Long Afterglow Phosphorescent Materials. Switzerland: Springer International Publishing AG, 2017: 50-125. |
[3] | TERRASCHKE H, WICKLEDER C . UV, blue, green, yellow, red, and small: newest developments on Eu2+-doped nanophosphors. Chemical Reviews, 2015,115:11352-11378. |
[4] | BESSIRE A, JACQUARt S, PRIOLKAR K , et al. ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness. Optics Express, 2011,19(11):10131-10137. |
[5] | LI Y, ZHOU S F, QIU J R , et al. Long persistent and photo-stimulated luminescence in Cr3+-doped Zn-Ga-Sn-O phosphors for deep and reproducible tissue imaging. Journal of Materials Chemistry C , 2014,2:2657-2663. |
[6] | WU Y L, LI Y, QIU J R , et al. Dual mode NIR long persistent phosphorescence and NIR-to-NIR Stokes luminescence in La3Ga5GeO14:Cr3+, Nd3+ phosphor. Journal of Alloys and Compounds, 2015,649:62-66. |
[7] | YI X, CHEN Z T, YE S , et al. Multifunctionalities of near-infrared upconversion luminescence, optical temperature sensing and long persistent luminescence in La3Ga5GeO14:Cr3+,Yb3+,Er3+ and their potential coupling. RSC Advances, 2015,5:49680-49687. |
[8] | BASAVARAJU N, RIOLKAR K R, GOURIER D , et al. The importance of inversion disorder in the visible light induced persistent luminescence in Cr3+ doped AB2O4(A = Zn or Mg and B = Ga or Al). Physical Chemistry Chemical Physics, 2015,17:1790-1799. |
[9] | LIU C Y, XIA Z G, MOLOKEEV M S , et al. Synthesis, crystal structure, and enhanced luminescence of garnet-type Ca3Ga2Ge3O12:Cr 3+ by codoping Bi 3+. Journal of the American Ceramic Society , 2015,98(6):1870-1876. |
[10] | ZHANG D D, LIU J M, SONG N , et al. Fabrication of mesoporous La3Ga5GeO14:Cr 3+,Zn 2+ persistent luminescence nanocarriers with superlong after glow for bioimaging-guided in vivo drug delivery to the gut. Journal of Materials Chemistry B , 2018,6:1479-1488. |
[11] | LI Y, LI Y Y, QIU J R , et al. Tailoring of the trap distribution and crystal field in Cr 3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence. NPG Asia Materials , 2015,7:e180. |
[12] | PAN Z W, LU Y Y, LIU F . Sunlight-activated long-persistent luminescence in the near-infrared from Cr 3+-doped zinc gallogermanates . Nature Materials, 2011,11(1):58-63. |
[13] | MALDINEY T , BESSIÈRE A, SEGUIN J, et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nature Materials, 2014,13(4):418-426. |
[14] | ALLIX M, CHENU S, VERON E , et al. Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4. Chemistry of Materials, 2013,25:1600-1606. |
[15] | ZHAO H X, YANG Z X, YAN X P . Fabrication and bioconjugation of B III and Cr III co-doped ZnGa2O4 persistent luminescent nanoparticles for dual-targeted cancer bioimaging . Nanoscale, 2016,8:18987-18994. |
[16] | ZHUANG Y X, UEDA J, TANABE S . Multi-color persistent luminescence in transparent glass ceramics containing spinel nano- crystals with Mn 2+ ions. Applied Physics Letters, 2014,105:191904. |
[17] | SHARMA S K , BESSIÈRE A, BASAVARAJU N, et al. Interplay between chromium content and lattice disorder on persistent luminescence of ZnGa2O4:Cr3+ for in vivo imaging. Journal of Luminescence, 2014,155:251-256. |
[18] | BANDPAY G M, AMERI F, ANSAR K ,et al. Mathematical and empirical evaluation of accuracy of the Kubelka-Munk model for color match prediction of opaque and translucent surface coatings. Journal of Coatings Technology and Research, 2018,15(5):1117-1131. |
[19] | FUTSUHARA M, YOSHIOKA K, TAKAI O . Structural, electrical and optical properties of zinc nitride thin films prepared by reactive rf magnetron sputtering. Thin Solid Films, 1998,322:274-281. |
[20] | BASAVARAJU N, PRIOLKAR K R, BESSIE RE A , et al. Controlling disorder in the ZnGa2O4:Cr3+ persistent phosphor by Mg2+ substitution. Physical Chemistry Chemical Physics, 2017,19:1369-1377. |
[21] | EECKHOUT K V D, SMET P F, POELMAN D . Persistent luminescence in Eu2+-doped compounds: A review . materials, 2010,3:2536-2566. |
[22] | SUN F Q, XIE R R, GUAN L , et al. Cr3+ doped Ca14Zn6Ga10O35: a near-infrared long persistent luminescence phosphor. Journal of Luminescence, 2016,180:251-257. |
[23] | WANG B, LIN H, XU J , et al. Design, preparation, and characterization of a novel red long-persistent perovskite phosphor: Ca3Ti2O7:Pr3+. Inorganic Chemistry, 2015,54:11299-11306. |
[24] | LI X D, TANG X, WANG Z B , et al. Structural, persistent luminescence properties and trap characteristics of an orthosilicate phosphor: LiGaSiO4:Mn2+. Journal of Alloys and Compounds, 2017,721:512-519. |
[25] | WANG W X, SUN Z Y, HE X Y , et al. How to design ultraviolet emitting persistent materials for potential multifunctional applications: a living example of a NaLuGeO4:Bi3+,Eu3+ phosphor. Journal of Materials Chemistry C, 2017,5:4310-4318. |
[1] | 阿不都卡德尔·阿不都克尤木, 艾力江·吐尔地, 热娜古丽·阿不都热合曼, 马木提江·吐尔逊, 努尔比亚·努尔买提. Dy, Cr共掺杂ZnGa2O4长余辉纳米粒子的制备及发光性能研究[J]. 无机材料学报, 2016, 31(12): 1363-1369. |
[2] | 沈冬冬, 季振国. 电子束还原SrAl2O4: (Eu2+, Dy3+)长余辉材料的力致发光研究[J]. 无机材料学报, 2015, 30(1): 93-96. |
[3] | 邱 涛, 季振国, 孔 哲, 李红霞, 张尔攀. 长余辉夜光材料Sr4Al14O25:(Eu,Dy)的制备及性能优化[J]. 无机材料学报, 2012, 27(12): 1341-1344. |
[4] | 栾 林,郭崇峰,黄德修. 锶铝比例对铝酸锶长余辉发光材料性能的影响[J]. 无机材料学报, 2009, 24(1): 53-56. |
[5] | 洪樟连,张朋越,黄秋平,樊先平,王民权. Y2O2S:0.03Eu,0.03Ti的长余辉特性及Ti向Eu3+的余辉传能机制[J]. 无机材料学报, 2006, 21(2): 329-334. |
[6] | 毛大立,赵莉,常程康,费琴,姜岭. 纳米 Sr2MgSi2O7: Eu2+, Dy3+的长余辉发光行为[J]. 无机材料学报, 2005, 20(1): 220-224. |
[7] | 施朝淑,戚泽明. 长余辉(寿命)发光材料研究的最新进展[J]. 无机材料学报, 2004, 19(5): 961-969. |
[8] | 袁双龙,杨云霞,徐志珍,方斌. 掺杂对Y2O2S:Eu长余辉特性的影响及长余辉发光机理[J]. 无机材料学报, 2004, 19(3): 523-528. |
[9] | 姜岭,常程康,毛大立. 长余辉发光材料的研究进展[J]. 无机材料学报, 2004, 19(2): 268-274. |
[10] | 林元华,南策文,张中太,王雨田. 热释发光-正电子湮灭法研究SrAl2O4基磷光体长余辉发光机制[J]. 无机材料学报, 2004, 19(1): 201-206. |
[11] | 耿杰,吴召平,陈玮,罗澜. SrAl2O4:Eu2+,Dy3+发光粉体的长余辉特性研究[J]. 无机材料学报, 2003, 18(2): 480-484. |
[12] | 赵淑金,林元华,张中太,南策文. Eu2+离子在Sr2Al6O11基磷光体中发光行为的研究[J]. 无机材料学报, 2003, 18(1): 225-228. |
[13] | 林元华,陈清明,张中太,唐子龙. 烧成条件对长余辉蓄光玻璃光学性能的影响[J]. 无机材料学报, 2000, 15(6): 982-986. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||