无机材料学报 ›› 2019, Vol. 34 ›› Issue (9): 983-990.DOI: 10.15541/jim20180586

• 研究论文 • 上一篇    下一篇

硅铬共掺杂尖晶石长余辉材料Zn1+xGa2-2xSixO4:Cr3+中近红外余辉的增强及陷阱分布分析

王锴,严丽萍,邵康,张聪,潘再法()   

  1. 浙江工业大学 化学工程学院, 杭州 310014
  • 收稿日期:2018-12-17 修回日期:2019-01-24 出版日期:2019-09-20 发布日期:2019-05-29
  • 作者简介:王 锴(1994-), 男, 硕士研究生. E-mail: 752673535@qq.com
  • 基金资助:
    国家自然科学基金(10804099);国家自然科学基金(21804119);浙江省自然科学基金重点项目(LZ18B050002)

Near-infrared Afterglow Enhancement and Trap Distribution Analysis of Silicon-chromium Co-doped Persistent Luminescence Materials Zn1+xGa2-2xSixO4:Cr3+

WANG Kai,YAN Li-Ping,SHAO Kang,ZHANG Cong,PAN Zai-Fa()   

  1. College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
  • Received:2018-12-17 Revised:2019-01-24 Online:2019-09-20 Published:2019-05-29
  • Supported by:
    National Natural Science Foundation of China(10804099);National Natural Science Foundation of China(21804119);Key Project of Natural Science Foundation of Zhejiang Province(LZ18B050002)

摘要:

本论文基于硅铬共掺杂, 合成得到了一种尖晶石长余辉材料Zn1+xGa2-2xSixO4:Cr 3+。实验采用高温固相法, 按照设计的化学计量比精确称量ZnO、Ga2O3、SiO2和Cr2O3等原料, 制备了一系列硅铬共掺杂的镓酸锌尖晶石长余辉材料, 其化学式为Zn1+xGa2-2xSixO4:Cr 3+(x=0, 0.1, 0.15, 0.2, 0.5, 1)。实验结果表明: 采用硅铬共掺杂方式后, 引入合适浓度的硅离子可有效改善余辉性能。当x=0.2时, 样品余辉强度最佳, 相比ZnGa2O4:Cr 3+增强了3倍, 并且余辉持续时间长达24 h。进一步的陷阱分布分析表明, 在ZnGa2O4基质基础上引入硅掺杂, 可有效调控不同陷阱深度的分布。即在丰富的反位缺陷基础上, 硅的共掺杂可增加不等价替换缺陷和填隙缺陷等, 并可调控禁带宽度及缺陷形成, 从而实现改善余辉性能的目的。

关键词: Zn1+xGa2-2xSixO4:Cr3+, 长余辉, 不等价掺杂, 陷阱分布

Abstract:

Co-doping of silicon in zinc gallate spinel persistent luminescent phosphor was adopted to enhance the afterglow properties. Firstly, a series of silicon-chromium co-doping zinc gallate spinel samples were prepared by high temperature solid state reaction method. Phosphor with chemical formula of Zn1+xGa2-2xSixO4:Cr 3+ (x = 0, 0.1, 0.15, 0.2, 0.5, 1) was obtained with the raw materials of ZnO, Ga2O3, SiO2, and Cr2O3. The experimental results show that the introduction of suitable concentration of silicon improves the afterglow performance effectively. The strongest afterglow intensity was obtained for sample with x = 0.2, which is 3 times higher than ZnGa2O4:Cr 3+, and the afterglow duration is up to 24 h. Through further trap distribution analysis, it is shown that the introduction of silicon in the ZnGa2O4 host can regulate the distribution of trap depths. Particularly, besides the antisite defects, the co-doping of silicon can induce the formation of aliovalent substitution defects and interstitial defects, as well as tune the band gap value, thereby achieving the purpose of improving the afterglow performance.

Key words: Zn1+xGa2-2xSixO4:Cr3+, persistent luminescence, non-equivalent doping, trap distribution

中图分类号: