无机材料学报, 2023, 38(9): 1083-1088 DOI: 10.15541/jim20230005

研究论文

共沉淀法制备Cs2Ag0.1Na0.9BiCl6:Tm3+双钙钛矿及其近红外发光性能

王马超,1,2, 唐扬敏1,2, 邓明雪1, 周真真1, 刘小峰3, 王家成,1,2, 刘茜,1

1.中国科学院 上海硅酸盐研究所, 上海 200050

2.中国科学院大学 材料科学与光电技术学院, 北京 100864

3.浙江大学 材料科学与工程学院, 杭州 310027

Cs2Ag0.1Na0.9BiCl6:Tm3+ Double Perovskite: Coprecipitation Preparation and Near-infrared Emission

WANG Machao,1,2, TANG Yangmin1,2, DENG Mingxue1, ZHOU Zhenzhen1, LIU Xiaofeng3, WANG Jiacheng,1,2, LIU Qian,1

1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, Beijing 100864, China

3. School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

通讯作者: 王家成, 研究员. E-mail:jiacheng.wang@mail.sic.ac.cn;刘 茜, 研究员. E-mail:qianliu@mail.sic.ac.cn

收稿日期: 2023-01-3   修回日期: 2023-03-15   网络出版日期: 2023-04-15

基金资助: 国家自然科学基金(92163117)
国家自然科学基金(62175210)
上海市自然科学基金(20ZR1465900)
上海市自然科学基金(22ZR1472100)

Corresponding authors: WANG Jiacheng, professor. E-mail:jiacheng.wang@mail.sic.ac.cn;LIU Qian, professor. E-mail:qianliu@mail.sic.ac.cn

Received: 2023-01-3   Revised: 2023-03-15   Online: 2023-04-15

Fund supported: National Natural Science Foundation of China(92163117)
National Natural Science Foundation of China(62175210)
Shanghai Municipal Natural Science Foundation(20ZR1465900)
Shanghai Municipal Natural Science Foundation(22ZR1472100)

摘要

间接带隙的Cs2NaBiCl6双钙钛矿材料具有近红外宽波段发射特性, 但低发光效率限制了其在近红外发光领域的应用。本工作通过共沉淀法快速制备微米级尺寸的Cs2Ag0.1Na0.9BiCl6:Tm3+双钙钛矿晶体, 实现了近红外荧光增强, 并系统研究了其光学吸收、光致发射(PL)、光致激发(PLE)、时间分辨光致发光和荧光量子效率(PLQY)等光学性能。共沉淀法制备的Cs2Ag0.1Na0.9BiCl6:Tm3+的光学带隙为3.06 eV。在350 nm紫外光激发下, 可以观察到峰值位于680 nm的近红外宽峰发射, 这源于自陷激子发光。通过引入Tm3+作为新的发光中心, 实现了810 nm波段的近红外发光增强, 在780~830 nm波段荧光量子效率(PLQY)从1.67%提高到11.77%, 提高了6.05倍。在650~900 nm波段, Cs2Ag0.1Na0.9BiCl6:Tm3+的近红外PLQY高达25.22%。本研究证明了共沉淀法快速制备的Cs2Ag0.1Na0.9BiCl6:Tm3+钙钛矿作为新型近红外光源材料的可行性。

关键词: 近红外发光; 自陷激子; 共沉淀; 双钙钛矿; Cs2Ag0.1Na0.9BiCl6

Abstract

Cs2NaBiCl6 double perovskite with indirect band demonstrates near-infrared (NIR) wide-band emission, but its low efficacy limits its potential applications in the field of NIR. In this work, micron-sized Cs2Ag0.1Na0.9BiCl6:Tm3+ double perovskites were synthesized via the coprecipitation method, which shows enhanced NIR emission. Their optical absorption, photoluminescence emission (PL) and excitation (PLE), time-resolved photoluminescence, and photoluminescence quantum yield (PLQY) were investigated. The Cs2Ag0.1Na0.9BiCl6:Tm3+ shows optical bandgap of 3.06 eV and NIR broad emission peaking at 680 nm under 350 nm excitation due to recombination of self-trapped excitons (STEs). Meanwhile, a new emission peak could be observed at 810 nm due to Tm3+ doping. The PLQY in the band range of 780-830 nm can be increased by 6.05 times from 1.67% to 11.77% and in the band range of 650-900 nm can reach 25.22%. This study proves the feasibility of Cs2Ag0.1Na0.9BiCl6:Tm3+ double perovskite as new NIR emission material.

Keywords: near-infrared emission; self-trapped excitons; coprecipitation; double perovskite; Cs2Ag0.1Na0.9BiCl6

PDF (4573KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王马超, 唐扬敏, 邓明雪, 周真真, 刘小峰, 王家成, 刘茜. 共沉淀法制备Cs2Ag0.1Na0.9BiCl6:Tm3+双钙钛矿及其近红外发光性能. 无机材料学报, 2023, 38(9): 1083-1088 DOI:10.15541/jim20230005

WANG Machao, TANG Yangmin, DENG Mingxue, ZHOU Zhenzhen, LIU Xiaofeng, WANG Jiacheng, LIU Qian. Cs2Ag0.1Na0.9BiCl6:Tm3+ Double Perovskite: Coprecipitation Preparation and Near-infrared Emission. Journal of Inorganic Materials, 2023, 38(9): 1083-1088 DOI:10.15541/jim20230005

波长位于650~950 nm的近红外一区(NIR-I)发光在光催化、食品分析、健康检测以及夜视等领域具有广阔应用前景[1-4]。特别地, 810 nm的近红外光广泛应用于伤口愈合、光催化以及黄斑治疗领域[5-7]。目前, 商用近红外光源有钨卤灯、激光二极管和超连续谱激光器, 但是存在耗电量高、寿命短、易产生大量热量和器件结构不紧凑等缺点[8]。NIR发光二极管(LED)是产生NIR的理想光源。卤化铅钙钛矿(LHPs)作为NIR光源的基质材料, 具有高吸收系数、高载流子迁移率、可调带隙和可液相制备的优点[9-12]。目前, 通过有机基团杂化、低维纳米化等方式, 可以实现LHPs的NIR-I发射[13-14]。遗憾的是, LHPs中Pb元素的毒性及其结构对光、热和湿度的弱稳定性限制了其在商业上的应用推广。

间接带隙的Cs2NaBiCl6双钙钛矿材料具有低环境毒性和优异稳定性特点, 在NIR发光领域具有潜在的应用价值。科研人员通常采用掺杂或合金化来提高Cs2NaBiCl6在NIR波段的发光强度[15]。Luo等[16]采用Ag、Na合金化途径制备了Cs2(Ag/Na)InCl6双钙钛矿, 通过操纵自陷激子波函数的奇偶性并降低半导体的电子维数来打破暗转变(反转-对称性引起的奇偶禁止跃迁), 实现了荧光增强。Zhang等[17]通过水热法合成了Cs2(Ag/Na)BiCl6双钙钛矿, 将发射峰引入NIR波段。但是自陷激子的发射峰与能带的边缘态无关, 掺杂不会使发射峰发生位移。Yao等[18]通过热注入法合成的Cs2(Ag/Na)BiCl6具有20%的荧光量子效率, 目前Cs2NaBiCl6在近红外波段的发射仍需增强。

本工作通过共沉淀法成功快速制备了Ag/Tm双掺杂的Cs2NaBiCl6(Cs2Ag0.1Na0.9BiCl6:Tm3+)微晶双钙钛矿, 对材料进行了全面的光学性能表征, 结合拉曼光谱和X射线光电子能谱等研究了发光机制。

1 实验方法

1.1 原料

CsCl(99.999%, Aladdin)、NaCl(99.99%, Adamas)、AgCl(99.5%, Aladdin)、BiCl3(99.0%, Adamas)、HCl(AR, 沪试)、Tm2O3(AR, 沪试), 无水乙醇(AR, 上海凌峰)。

1.2 材料合成

实验过程中进行遮光处理, 防止AgCl分解。首先, 将0.2 mmol的AgCl, 1.8 mmol的NaCl, 2 mmol的BiCl3, 2 mmol的Tm2O3溶于20 mL的浓盐酸形成前驱体溶液。然后, 将装有前驱体溶液的烧瓶置于100 ℃油浴中搅拌。溶液澄清后, 再加入4 mmol的CsCl, 继续搅拌20 min, 充分反应后形成钙钛矿微晶。停止加热后继续搅拌10 min, 以确保反应完全。钙钛矿微晶溶液抽滤后, 固体用无水乙醇洗涤。所有样品除了前驱体溶液制备不同, 其他合成过程相同。其中未掺杂的Cs2NaBiCl6钙钛矿前驱体溶液通过将2 mmol的NaCl和2 mmol的BiCl3溶于20 mL的浓盐酸获得。Ag单掺杂的Cs2Ag0.1Na0.9BiCl6钙钛矿前驱体溶液通过将0.2 mmol的AgCl, 1.8 mmol的NaCl和2 mmol的BiCl3溶于20 mL的浓盐酸获得。所获的钙钛矿样品置于80 ℃的烘箱中干燥过夜后, 取出并在室温下储存, 得到Cs2NaBiCl6, Cs2Ag0.1Na0.9BiCl6和Cs2Ag0.1Na0.9BiCl6:Tm3+钙钛矿微晶。

1.3 性能测试

采用X射线衍射仪(Rigaku, D/max 2550V, Cu Kα1, λ=0.154187 nm, XRD)测试样品的晶体结构。采用电感耦合等离子体发射光谱仪(安捷伦, ICPOES730)进行元素含量分析。采用扫描电子显微镜(日立, SU8200, SEM)表征样品表面形貌, 能量色散X射线谱图(EDS)分析样品的表面元素分布。采用X射线光电子能谱仪(岛津, AXIS ULTRA DLD, 单色铝靶, XPS)表征样品的分子结构和原子价态。采用拉曼光谱仪(HORIBA HR Evolution, 532 nm激发光源)分析样品的分子结构。采用紫外分光光度计(Shimadzu, UV-2600, BaSO4作为参比样品)记录样品的紫外-可见光(UV-Vis)吸收光谱图。采用稳态/瞬态荧光光谱仪(Edinburgh, FLS1000)的动力学模式测试衰变曲线。采用UV-NIR绝对光致发光量子产率光谱仪(Hamamatsu Photonics, Quantaurus QY Plus C13534-12)测量样品的光致发光量子效率(PLQY)。

2 结果与讨论

通过共沉淀法合成Ag/Tm双掺杂的Cs2NaBiCl6双钙钛矿。在典型的合成过程中, 首先NaCl、AgCl、BiCl3和Tm2O3按照化学计量比溶解在100 ℃浓盐酸中, 然后加入CsCl, 形成钙钛矿微晶。如图1(a)所示, Cs2NaBiCl6微晶具有典型的钙钛矿结构, 晶格中每个Bi3+和Na+离子与6个Cl-离子形成[BiCl6]3-和[NaCl6]5-单元, [BiCl6]3-与[NaCl6]5-八面体交替堆叠, Cs+离子占据结构中的间隙位置。掺杂Ag/Tm后, 部分Na+离子位置被Ag+离子占据, 同时Tm3+离子占据部分Bi3+离子位置, 形成新的[AgCl6]5-和[TmCl6]3-单元。样品的XRD图谱如图1(b)所示, 掺杂Ag/Tm前后的样品都呈现出与Cs2NaBiCl6一样的Fm-3m空间群的立方相结构,且无杂质峰。该空间群在结构上的高度对称性限制了Cs2NaBiCl6中Bi3+的光学吸收,可以通过掺杂获得改善。图1(c)为Cs2Ag0.1Na0.9BiCl6:Tm3+的SEM照片和EDS元素分布图, 显示样品颗粒在微米尺度, 呈现不规则形状, 各元素分布均匀。XRD图谱和EDS元素分布图表明成功引入了Ag+和Tm3+离子, 形成了合金相。在不同浓度掺杂的预实验中(Cs2AgxNa1-xBiCl6: yTm3+, 其中Ag掺杂浓度x=0.1, 0.2, 0.3, 0.4, 投料时Tm : Bi的原子比y=0.5, 1.0, 1.5, 2.0, 2.5, BiCl3固定为2 mmol), Cs2Ag0.1Na0.9BiCl6:Tm3+具有最优发光性能。通过电感耦合等离子体发射光谱(ICP-OES)测得Ag的实际掺杂浓度x≈0.1, Tm浓度y≈0.04。

图1

图1   晶体的结构表征

Fig. 1   Microstructure of crystals

(a) Crystal structure and (b) XRD patterns of Cs2NaBiCl6, Cs2Ag0.1Na0.9BiCl6, and Cs2Ag0.1Na0.9BiCl6:Tm3+; (c) SEM image (left) and EDS elemental mappings (right) of Cs2Ag0.1Na0.9BiCl6:Tm3+


图2(a)显示了掺杂Ag/Tm前后样品的光学吸收光谱。所有晶体在200~400 nm范围内有一个宽吸收带。在Cs2NaBiCl6中掺杂Ag+后, 吸收带从350 nm红移至375 nm, 表明Ag+掺杂可以降低Cs2NaBiCl6晶体的带隙能量。图2(b)为通过吸收光谱拟合获得的Tauc谱图, 晶体的光学带隙从3.34 eV(Cs2NaBiCl6)降低到2.95 eV(Cs2Ag0.1Na0.9BiCl6)。带隙减小与晶体价带中Ag4d轨道与Cl3p轨道的重叠有关[17], 掺杂Ag+可以将Ag4d轨道分量引入价带顶(VBM)。Ag取代Na后, Ag+和Cl-之间的强耦合会引起Cs2NaBiCl6的宽带隙变窄。由Tauc图估计, Tm3+取代Bi3+后, 会导致材料带隙略微增大至3.06 eV。

图2

图2   Cs2NaBiCl6, Cs2Ag0.1Na0.9BiCl6和Cs2Ag0.1Na0.9BiCl6:Tm3+的光学带隙

Fig. 2   Band gaps of Cs2NaBiCl6, Cs2Ag0.1Na0.9BiCl6 and Cs2Ag0.1Na0.9BiCl6:Tm3+ crystals

(a) Optical absorption; (b) Tauc plots. Colorful figures are available on the website


通过材料的XPS谱图和拉曼光谱分析掺杂Ag+(合金化)产生的晶格畸变[19]。如图3(a)所示, XPS分析证实样品中的所有元素都处于预期的氧化态, 由于Tm掺杂浓度较低, 未出现相应的特征峰。图3(b)中出现的Ag3d结合能峰, 证明样品中成功引入了Ag[20]。相应地, 如图3(c~e)所示, Cs2Ag0.1Na0.9BiCl6的Na1s、Bi4f和Cl3p的结合能与Cs2NaBiCl6相比分别降低了0.3、0.3和0.1 eV。XPS分析表明材料中形成了[AgCl6]5-八面体取代原位置的[NaCl6]5-八面体。图3(f)的拉曼光谱中288 cm-1 (35.78 meV)处的主峰A1g为纵向光学声子模式, 与[BiCl6]3-八面体中Cl原子对称拉伸振动相关。230 cm-1处强度较低的峰Eg与Cl原子的不对称拉伸振动相关。掺杂Ag后, Eg模式显著增强。[BiCl6]3-八面体的A1g纵向光学声子模式的能量(35.78 meV), 表明主要声子模式涉及电子-声子耦合[21]。这种强电子-声子耦合有利于形成自陷激子, 实现自陷激子(STEs)发光。

图3

图3   晶体的XPS和Raman表征

Fig. 3   XPS and Raman characterizations of crystals

(a) Total XPS spectra, and (b) Ag3d, (c) Na1s, (d) Bi4f, and (e) Cl2p high-resolution XPS spectra of Cs2NaBiCl6, Cs2Ag0.1Na0.9BiCl6 and Cs2Ag0.1Na0.9BiCl6:Tm3+; (f) Raman spectra of Cs2Ag0.1Na0.9BiCl6 and Cs2NaBiCl6


为了研究共沉淀法制备的钙钛矿微晶的光学性能, 测量了样品的光致发光发射光谱(PL)、激发光谱(PLE)、荧光量子效率(PLQY)和荧光衰减曲线。通常, STEs发射具有宽带发射、大斯托克斯位移和长光致发光衰减时间的特点。图4(a)显示Cs2NaBiCl6掺杂Ag+后PL谱形基本保持不变, 在350 nm紫外光激发下, 发出明亮的橙光。晶体具有覆盖450~ 900 nm的宽发射带, 半高宽(FWHM)约为250 nm, 可归因于[AgCl6]5-八面体产生的强Jahn-Teller畸变引起的本征自陷激子发射(STEs)[21]。STEs发射与能带边缘态无关, 因此引入Ag仅改变Cs2NaBiCl6的带隙, 对PL峰位置几乎没有影响。引入Tm后, 样品在810 nm处出现新的尖锐发射峰, 对应于Tm3+3H43H6辐射跃迁。如图4(b)所示, PLE显示出250~ 390 nm的宽激发带, 其主要由298、320和345 nm的三个激发峰组成, 来源于Bi3+1S01P13P23P1激发[22]。样品表现出335 nm的大斯托克斯位移, 可以避免激发光源对荧光发射的干扰, 具有抗干扰强的优点。如图4(c)所示, 掺杂Ag/Tm后样品的PL积分强度在NIR(650~900 nm)波段显著提高。图4(d)表明, PLQY具有相同的变化趋势, 掺杂Ag/Tm后样品在650~900 nm波段PLQY为从9.44%(未掺杂样品)提高到25.22%, 在780~830 nm波段PLQY从1.67%提高到11.77%, 提高了6.05倍, 对应Tm3+离子发光。图4(e)为稀土元素Tm掺杂前后的荧光衰减曲线, 激子寿命约6.3 μs, 符合STEs荧光寿命长的特点, 同时表明引入Tm不会抑制STEs辐射跃迁过程。

图4

图4   晶体的光学性能

Fig. 4   Optical properties of crystals

(a) Photoluminescence emission (PL) spectra, (c) integrated NIR emission intensity and (d) photoluminescence quantum yield (PLQY) of Cs2NaBiCl6, Cs2Ag0.1Na0.9BiCl6 and Cs2Ag0.1Na0.9BiCl6:Tm3+; (b) excitation (PLE) spectra and (e) PL decay curves (λem = 680 nm) of Cs2Ag0.1Na0.9BiCl6 and Cs2Ag0.1Na0.9BiCl6:Tm3+; Colorful figures are available on website


最后, Cs2Ag0.1Na0.9BiCl6:Tm3+在810和680 nm波长的激发光谱具有相似的形状(图4(b)), 这表明Tm3+的激发能量源自STEs的复合辐射。整个能量传递过程如图5所示。在该系统中, 激发能量首先被Bi3+吸收, 出现Bi3+对应于PLE光谱的三种跃迁:偶极允许跃迁为1S01P1, 自旋轨道允许跃迁1S03P1, 以及奇偶禁止跃迁1S03P2。Ag+破坏了晶格对称性, 1S03P2禁止跃迁转变为允许跃迁。随后能量转移到STEs态, 自陷激子复合释放能量, 发出450~900 nm的宽带荧光。Tm3+吸收STEs的荧光能量实现4f-4f跃迁, 最终发出对应于3H43H6能级跃迁的810 nm近红外光。

图5

图5   Cs2Ag0.1Na0.9BiCl6:Tm3+的发光原理

Fig. 5   Schematic diagram of simplified energy levels for Cs2Ag0.1Na0.9BiCl6:Tm3+


3 结论

本工作提供了一种快速制备Ag/Tm共掺杂Cs2NaBiCl6钙钛矿微晶的共沉淀合成方法。该材料具有优异的NIR-I光学性能。在350 nm紫外激发下, 可以观察到位于680 nm的宽峰发射以及位于810 nm的发射尖峰, 宽峰发射源自自陷激子发光。引入Ag+产生Jahn-Teller畸变, 促进了STEs发射, 提高了荧光强度。同时, 稀土Tm3+充当新的发光中心, STEs辐射的能量又再次被Tm3+利用, 所以780~830 nm波段的PLQY高达11.77%。这一研究结果为开发高性能近红外光电器件提供了一种新的材料选择。

参考文献

HAN G, LI G, HUANG J, et al.

Two-photon-absorbing ruthenium complexes enable near infrared light-driven photocatalysis

Nature Communications, 2022, 13: 2288.

DOI      PMID      [本文引用: 1]

One-photon-absorbing photosensitizers are commonly used in homogeneous photocatalysis which require the absorption of ultraviolet (UV) /visible light to populate the desired excited states with adequate energy and lifetime. Nevertheless, the limited penetration depth and competing absorption by organic substrates of UV/visible light calls upon exploring the utilization of longer-wavelength irradiation, such as near-infrared light (λ> 700 nm). Despite being found applications in photodynamic therapy and bioimaging, two-photon absorption (TPA), the simultaneous absorption of two photons by one molecule, has been rarely explored in homogeneous photocatalysis. Herein, we report a group of ruthenium polypyridyl complexes possessing TPA capability that can drive a variety of organic transformations upon irradiation with 740 nm light. We demonstrate that these TPA ruthenium complexes can operate in an analogous manner as one-photon-absorbing photosensitizers for both energy-transfer and photoredox reactions, as well as function in concert with a transition metal co-catalyst for metallaphotoredox C-C coupling reactions.© 2022. The Author(s).

MARQUES E J, DE FREITAS S T, PIMENTEL M F, et al.

Rapid and non-destructive determination of quality parameters in the ‘Tommy Atkins’ mango using a novel handheld near infrared spectrometer

Food Chemistry, 2016, 197: 1207.

DOI      URL     [本文引用: 1]

HAYASHI D, VAN DONGEN A M, BOEREKAMP J, et al.

A broadband LED source in visible to short-wave-infrared wavelengths for spectral tumor diagnostics

Applied Physics Letters, 2017, 110(23): 233701.

DOI      URL     [本文引用: 1]

Various tumor types exhibit the spectral fingerprints in the absorption and reflection spectra in visible and especially in near- to short-wave-infrared wavelength ranges. For the purpose of spectral tumor diagnostics by means of diffuse reflectance spectroscopy, we developed a broadband light emitting diode (LED) source consisting of a blue LED for optical excitation, Lu3Al5O12:Ce3+,Cr3+ luminescent garnet for visible to near infrared emissions, and Bismuth doped GeO2 luminescent glass for near-infrared to short-wave infrared emissions. It emits broad-band light emissions continuously in 470–1600 nm with a spectral gap at 900–1000 nm. In comparison to the currently available broadband light sources like halogen lamps, high-pressure discharge lamps and super continuum lasers, the light sources of this paper has significant advantages for spectral tissue diagnostics in high-spectral stability, improved light coupling to optical fibers, potential in low light source cost and enabling battery-drive.

LIU D, LI G, DANG P, et al.

Simultaneous broadening and enhancement of Cr3+ photoluminescence in LiIn2SbO6 by chemical unit cosubstitution: night-vision and near-infrared spectroscopy detection applications

Angewandte Chemie International Edition, 2021, 60(26): 14644.

DOI      URL     [本文引用: 1]

ZHAO H, JI T, SUN T, et al.

Comparative study on photobiomodulation between 630 nm and 810 nm LED in diabetic wound healing both in vitro and in vivo

Journal of Innovative Optical Health Sciences, 2022, 15(2): 2250010.

DOI      URL     [本文引用: 1]

Photobiomodulation (PBM) promoting wound healing has been demonstrated by many studies. Currently, 630 nm and 810 nm light-emitting diodes (LEDs), as light sources, are frequently used in the treatment of diabetic foot ulcers (DFUs) in clinics. However, the dose–effect relationship of LED-mediated PBM is not fully understood. Furthermore, among the 630[Formula: see text]nm and 810[Formula: see text]nm LEDs, which one gets a better effect on accelerating the wound healing of diabetic ulcers is not clear. The aim of this study is to evaluate and compare the effects of 630[Formula: see text]nm and 810[Formula: see text]nm LED-mediated PBM in wound healing both in vitro and in vivo. Our results showed that both 630[Formula: see text]nm and 810[Formula: see text]nm LED irradiation significantly promoted the proliferation of mouse fibroblast cells (L929) at different light irradiances (1, 5, and 10[Formula: see text]mW/cm[Formula: see text]. The cell proliferation rate increased with the extension of irradiation time (100, 200, and 500[Formula: see text]s), but it decreased when the irradiation time was over 500[Formula: see text]s. Both 630[Formula: see text]nm and 810[Formula: see text]nm LED irradiation (5[Formula: see text]mW/cm[Formula: see text] significantly improved the migration capability of L929 cells. No difference between 630[Formula: see text]nm and 810[Formula: see text]nm LED-mediated PBM in promoting cell proliferation and migration was detected. In vivo results presented that both 630[Formula: see text]nm and 810[Formula: see text]nm LED irradiation promoted the wound healing and the expression of the vascular endothelial growth factor (VEGF) and transforming growth factor (TGF) in the wounded skin of type 2 diabetic mice. Overall, these results suggested that LED-mediated PBM promotes wound healing of diabetic mice through promoting fibroblast cell proliferation, migration, and the expression of growth factors in the wounded skin. LEDs (630[Formula: see text]nm and 810[Formula: see text]nm) have a similar outcome in promoting wound healing of type 2 diabetic mice.

SHI L, REN X, WANG Q, et al.

Tridecaboron diphosphide: a new infrared light active photocatalyst for efficient CO2 photoreduction under mild reaction conditions

Journal of Materials Chemistry A, 2021, 9(4): 2421.

DOI      URL     [本文引用: 1]

FRIBERG T R, KARATZA E C.

The treatment of macular disease using a micropulsed and continuous wave 810-nm diode laser

Ophthalmology, 1997, 104(12): 2030.

DOI      PMID      [本文引用: 1]

The purpose of the study is to determine whether the 810-nm diode wavelength using a rectangular waveform is clinically effective in the treatment of choroidal neovascularization from age-related macular degeneration and to determine whether macular edema secondary to branch vein occlusion or diabetic retinopathy can be effectively treated with this laser using the micropulse waveform.Review of consecutive nonrandomized patients whose eyes were treated with the diode laser over a 30-month period.Fifty-three patients with an initial presentation of choroidal neovascularization located subfoveally (77%), extrafoveally (17%), and juxtafoveally (6%); 14 patients with macular edema from a branch vein occlusion; and 59 patients with diabetic macular edema, 40 of which were treated for the first time.Ablative rectangular wave laser photocoagulation was applied to the choroidal neovascular membranes and very light threshold treatment was applied in a macular grid to treat retinal edema. Microaneurysms were not targeted.Anatomic resolution of macular edema or choroidal neovascularization and visual acuity.Sixty percent of eyes treated for choroidal neovascularization had no persistence or recurrence at 6 months, and 72% achieved visual stabilization. In 8% of eyes, some localized bleeding occurred during photocoagulation. Clinical resolution of macular edema from branch vein occlusion occurred by 6 months in 92% of eyes, and 77% had stabilization of visual acuity. At 6 months, 76% of newly treated patients with diabetic macular edema and 67% of previously treated patients had clinical resolution of their edema. Vision was improved or stabilized in 91% and 73% of newly treated and retreated patients at 6 months, respectively.The micropulsed 810-nm diode laser is clinically effective in the treatment of macular edema from venous occlusion and diabetic retinopathy, and the rectangular (normal) mode diode laser can be used in many eyes with choroidal neovascularization.

RAJENDRAN V, FANG M H, GUZMAN G N D, et al.

Super broadband near-infrared phosphors with high radiant flux as future light sources for spectroscopy applications

ACS Energy Letters, 2018, 3(11): 2679.

DOI      URL     [本文引用: 1]

DE WOLF S, HOLOVSKY J, MOON S J, et al.

Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance

The Journal of Physical Chemistry Letters, 2014, 5(6): 1035.

DOI      URL     [本文引用: 1]

BRENNER T M, EGGER D A, KRONIK L, et al.

Hybrid organic- inorganic perovskites: low-cost semiconductors with intriguing charge- transport properties

Nature Reviews Materials, 2016, 1: 15007.

DOI      [本文引用: 1]

GUO B, LAI R, JIANG S, et al.

Ultrastable near-infrared perovskite light-emitting diodes

Nature Photonics, 2022, 16(9): 637.

DOI      [本文引用: 1]

VASILOPOULOU M, FAKHARUDDIN A, GARCÍA DE ARQUER F P, et al.

Advances in solution-processed near-infrared light-emitting diodes

Nature Photonics, 2021, 15(9): 656.

DOI      [本文引用: 1]

ZHAO X, TAN Z K.

Large-area near-infrared perovskite light- emitting diodes

Nature Photonics, 2020, 14(4): 215.

DOI      [本文引用: 1]

YUAN M, QUAN L N, COMIN R, et al.

Perovskite energy funnels for efficient light-emitting diodes

Nature Nanotechnology, 2016, 11(10): 872.

DOI      PMID      [本文引用: 1]

Organometal halide perovskites exhibit large bulk crystal domain sizes, rare traps, excellent mobilities and carriers that are free at room temperature-properties that support their excellent performance in charge-separating devices. In devices that rely on the forward injection of electrons and holes, such as light-emitting diodes (LEDs), excellent mobilities contribute to the efficient capture of non-equilibrium charge carriers by rare non-radiative centres. Moreover, the lack of bound excitons weakens the competition of desired radiative (over undesired non-radiative) recombination. Here we report a perovskite mixed material comprising a series of differently quantum-size-tuned grains that funnels photoexcitations to the lowest-bandgap light-emitter in the mixture. The materials function as charge carrier concentrators, ensuring that radiative recombination successfully outcompetes trapping and hence non-radiative recombination. We use the new material to build devices that exhibit an external quantum efficiency (EQE) of 8.8% and a radiance of 80 W sr m. These represent the brightest and most efficient solution-processed near-infrared LEDs to date.

STROYUK O, RAIEVSKA O, HAUCH J, et al.

Doping/alloying pathways to lead-free halide perovskites with ultimate photoluminescence quantum yields

Angewandte Chemie International Edition, 2022, 62(3): e202212668.

[本文引用: 1]

LUO J, WANG X, LI S, et al.

Efficient and stable emission of warm-white light from lead-free halide double perovskites

Nature, 2018, 563(7732): 541.

DOI      [本文引用: 1]

ZHANG G, WANG D, LOU B, et al.

Efficient broadband near-infrared emission from lead-free halide double perovskite single crystal

Angewandte Chemie International Edition, 2022, 61(33): e202207454.

[本文引用: 2]

YAO M, WANG L, YAO J, et al.

Improving lead-free double perovskite Cs2NaBiCl6 nanocrystal optical properties via ion doping

Advanced Optical Materials, 2020, 8(8): 1901919.

DOI      URL     [本文引用: 1]

HU Y, LI Z, WANG Z, et al.

Suppressing local dendrites hotspot via current density redistribution using a superlithiophilic membrane for stable lithium metal anode

Advanced Science, 2023, doi: 10.1002/advs.202206995.

DOI      [本文引用: 1]

ZHENG Z, LIANG W, LIN R, et al.

Facile synthesis of zinc indium oxide nanofibers distributed with low content of silver for superior antibacterial activity

Small Structures, 2023, 4(4): 2200291.

DOI      URL     [本文引用: 1]

CHENG X, XIE Z, ZHENG W, et al.

Boosting the self-trapped exciton emission in alloyed Cs2(Ag/Na)InCl6 double perovskite via Cu+ doping

Advanced Science, 2022, 9(7): 2103724.

DOI      URL     [本文引用: 2]

ZHENG W, SUN R, LIU Y, et al.

Excitation management of lead-free perovskite nanocrystals through doping

ACS Applied Materials & Interfaces, 2021, 13(5): 6404.

[本文引用: 1]

/