无机材料学报, 2023, 38(12): 1373-1378 DOI: 10.15541/jim20230216

研究论文

颗粒级配对黏结剂喷射打印碳化硅陶瓷性能的影响

顾薛苏,1, 殷杰,1, 王康龙1, 崔崇2, 梅辉3, 陈忠明1, 刘学建1, 黄政仁,1,4

1.中国科学院 上海硅酸盐研究所, 上海 200050

2.南京理工大学 材料科学与工程学院, 南京 210094

3.西北工业大学 材料学院, 西安 710072

4.中国科学院 宁波材料技术与工程研究所, 宁波 315201

Effect of Particle Grading on Properties of Silicon Carbide Ceramics by Binder Jetting Printing

GU Xuesu,1, YIN Jie,1, WANG Kanglong1, CUI Chong2, MEI Hui3, CHEN Zhongming1, LIU Xuejian1, HUANG Zhengren,1,4

1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

2. School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

3. School of Materials, Northwestern Polytechnical University, Xi’an 710072, China

4. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

通讯作者: 殷 杰, 副研究员. E-mail:jieyin@mail.sic.ac.cn;黄政仁, 研究员. E-mail:zhrhuang@mail.sic.ac.cn

收稿日期: 2023-05-5   修回日期: 2023-06-16   网络出版日期: 2023-06-28

基金资助: 国家自然科学基金(U22A20129)
国家自然科学基金(52073299)
国家自然科学基金(52172077)
国家重点研发计划(2022YFB3706300)

Corresponding authors: YIN Jie, associate professor. E-mail:jieyin@mail.sic.ac.cn;HUANG Zhengren, professor. E-mail:zhrhuang@mail.sic.ac.cn

Received: 2023-05-5   Revised: 2023-06-16   Online: 2023-06-28

Fund supported: National Natural Science Foundation of China(U22A20129)
National Natural Science Foundation of China(52073299)
National Natural Science Foundation of China(52172077)
National Key R&D Program of China(2022YFB3706300)

摘要

碳化硅(SiC)陶瓷作为一种高性能结构功能一体化的陶瓷材料, 在航空航天、核能工业和制动系统等领域应用广泛。然而, 传统的制造方法无法满足大尺寸复杂结构SiC陶瓷日益增长的市场需求, 例如发动机喷嘴、襟翼和涡轮叶片等。黏结剂喷射(BJ)3D打印突破了传统成型的约束, 可以提供新的制造思路。本工作采用颗粒级配SiC的思路, 基于级配理论优化较佳的颗粒度配比, 研究了BJ打印对级配前后SiC陶瓷素坯及烧结体性能的影响。研究发现, BJ打印级配后的SiC素坯经过一次前驱体浸渍裂解(PIP)处理, 能够快速制备抗弯强度最大达到(16.70± 0.53) MPa的SiC素坯, 相比采用20 μm中位径未级配的样品提高了116%。进一步采用液相渗硅制备了致密的SiC陶瓷, 其密度、抗弯强度、弹性模量和断裂韧性分别达到(2.655±0.001) g/cm3, (285±30) MPa, (243±12) GPa和(2.54±0.02) MPa·m1/2。XRD分析表明, SiC烧结体主要以3C-β-SiC晶为主。本研究基于颗粒级配的原料, 采用黏结剂喷射打印, 结合一次浸渍裂解与液相渗硅制备工艺, 高效可靠地制备了高性能SiC陶瓷材料。

关键词: 碳化硅; 颗粒级配; 黏结剂喷射打印; 前驱体浸渍裂解

Abstract

Silicon carbide (SiC) ceramics, as a high-performance structural-functional integrated material, are widely used in aerospace, nuclear industry and braking system. However, the conventional fabrication methods can not meet the increasing demands for large-scale and complex-structured SiC ceramics, such as engine nozzles, flaps and turbine blades. Binder jetting (BJ) 3D printing technology can overcome the traditional obstacle and provide a novel manufacturing roadmap. Here, we adopted this technique via SiC particle grading, optimized the particle size ratio based on gradation theory, and studied the influence of BJ printing on properties of SiC green body and as-sintered ceramic. For the particle-graded green body after BJ printing, SiC ceramics with a maximum flexural strength of (16.70±0.53) MPa was obtained after one precursor impregnation and pyrolysis (PIP) treatment, whose flexural strength was improved by 116% as compared with that BJ printed from a median diameter of 20 μm. SiC ceramics were further densified using liquid phase siliconization, with the density, flexural strength, elastic modulus, and fracture toughness reaching (2.655±0.001) g/cm3, (285±30) MPa, (243±12) GPa, and (2.54±0.02) MPa·m1/2, respectively. XRD results demonstrated that the sintered SiC ceramics were mainly composed of 3C structured-β-SiC. All results show that high-performance SiC ceramic materials are innovatively prepared by an efficient and reliable method, based on the combined techniques of particle grading, BJ printing, PIP and liquid silicon infiltration.

Keywords: silicon carbide; particle grading; binder jetting printing; precursor impregnation and pyrolysis

PDF (880KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

顾薛苏, 殷杰, 王康龙, 崔崇, 梅辉, 陈忠明, 刘学建, 黄政仁. 颗粒级配对黏结剂喷射打印碳化硅陶瓷性能的影响. 无机材料学报, 2023, 38(12): 1373-1378 DOI:10.15541/jim20230216

GU Xuesu, YIN Jie, WANG Kanglong, CUI Chong, MEI Hui, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Effect of Particle Grading on Properties of Silicon Carbide Ceramics by Binder Jetting Printing. Journal of Inorganic Materials, 2023, 38(12): 1373-1378 DOI:10.15541/jim20230216

近年来, 随着科学技术的迅猛发展, 在特定服役环境下, 高性能陶瓷需要满足大尺寸复杂构型的要求。SiC陶瓷作为一种重要的热结构材料, 具有高强高硬、化学稳定性好、导热系数高等独特优良特性[1-4], 被广泛应用在航空航天、空间探测、能源化工等工程领域[5-7]。陶瓷的传统制备路线包括制粉、成型、烧结及后处理等工序, 成型作为至关重要的步骤, 主要包含干压成型、注浆成型以及流延成型等方法[8-10]。采用传统成型工艺制备高性能精细化陶瓷, 难以实现蜂窝状、拓扑状等多孔薄壁的异形复杂成型, 存在制备周期长、生产成本高、加工性差等局限性[11-13], 严重限制了碳化硅陶瓷的进一步推广应用。采用3D打印(3D printing)新技术可以有效解决上述难题, 为制备高性能陶瓷提供新的方案。

3D打印技术, 亦称为增材制造(Additive Manufacturing, AM), 它是一种基于数字化结合计算机辅助设计制造所需三维对象的技术, 被广泛应用在金属、陶瓷和高分子等材料领域[14]。3D打印技术主要分为浆料式3D打印和铺粉式3D打印, 前者成型需要考虑浆料的固含量、分散性和润湿性等诸多因素, 较为繁琐; 相比之下, 后者的制备操作更加简便。黏结剂喷射(BJ)打印[15]作为铺粉式3D打印的重要技术之一, 主要由铺粉、喷射打印和粉料黏合三个步骤构成, 其中铺粉决定了粉料状态, 喷射打印关系到打印精度, 粉料黏合影响到成型性能。BJ打印的具体过程如下: 通过投料机在成型区域内振动撒上一定厚度的粉料, 反旋转辊子将粉料均匀铺平在成型区, 接着通过计算机控制打印机喷头并根据CAD模型的轮廓信息在需要的区域有选择地喷射黏结剂到粉末床上, 使截面内的粉料与黏结剂溶液粘合, 加热器控制黏结剂/粉末的水分以及固化, 随后将成型缸下降一层, 继续撒料、铺平、喷射, 重复以上过程, 直至打印工作结束, 生成三维立体零件。目前, 国外对BJ打印SiC陶瓷的研究主要集中在打印参数、后处理工艺对SiC陶瓷性能的影响, 粉末特性对打印试件性能影响的研究较少, 而粉末的状态将会影响整个铺粉过程的好坏, 因而亟待开展相关研究。国内由于设备条件相对不成熟, 在BJ打印SiC陶瓷方面鲜有报道, 处于刚起步阶段。Cramer等[16]运用Exone生产的BJ设备, 打印参数设置为: 散粉速度25 mm/s, 振荡器转速2700 r/min, 辊子旋转速度300 r/min, 黏结剂饱和度80%, 加热器横扫速度22 mm/s, 研究了PIP对SiC复合材料性能的影响。研究发现SiC陶瓷的密度由2.05 g/cm3(1次PIP循环)增大到2.33 g/cm3(3次PIP循环), 3次PIP循环后的室温弯曲强度和杨氏模量分别达到(66.8±2.5) MPa和(69.5±2.8) GPa。他们团队[17]还采用PIP和反应熔渗(RMI)结合的技术, 通过两次浸渍酚醛树脂(PR)热解成碳, 结合RMI技术, 最终制备得到的陶瓷孔隙率小于2%, 弹性模量接近300 GPa, 抗弯强度达(517.6±24.8) MPa。Terrani等[18]采用Exone生产的BJ设备, 结合化学气相渗透致密化工艺, 最终打印得到陶瓷的导热系数和抗弯强度分别为37 W·(m·K)-1和297 MPa。

颗粒级配是一种能够很好地改善粉末堆积状态的方式, 可以有效提高素坯致密度, 并且引入粗颗粒可以降低陶瓷烧结时的界面扩散, 抑制晶粒长大, 从而改善陶瓷力学性能[19]。本研究利用颗粒级配改性粉体原料, 采用BJ打印素坯, 运用一次PIP处理并结合液相渗硅致密化烧结制备了SiC陶瓷, 探究颗粒级配对SiC素坯抗弯性能和孔径分布以及陶瓷力学性能的影响。

1 实验方法

1.1 实验材料

实验采用纯度>99.5%的市售SiC粉末(D50 = 5, 10, 20, 50, 80 μm, 上海尚磨机电有限公司)。采用Exone公司生产的型号为PhenolFuse的打印黏结剂, 它是一种水性有机黏结剂, 主要成分为乙二醇(体积分数20%)、乙二醇单丁醚(体积分数10%)和PR。

1.2 颗粒级配SiC粉末的制备

为保证级配后粉末具有一定流动性和堆积性能, 以便于成型过程中的铺粉, 颗粒级配前后不同中位径SiC粉末按照表1所示的质量配比进行混合, 表1中卡尔指数(Carr index)的数值越小, 对应粉体的流动性越好。混合工艺为: SiC球磨介质, 球料比1.5:1, 转速为60 r/min, 混料1 h。

表1   不同中位径SiC粉末的级配比例及流动性指数

Table 1  Mass ratios and flowability indexes of SiC powders with different median diameters

GroupFractionCarr index/%
G020 μm (non-grading)37.11
G15 μm:10 μm:20 μm:50 μm:80 μm =5:6:15:5:527.80
G25 μm:10 μm:20 μm:50 μm:80 μm =6:6:15:5:430.05
G35 μm:10 μm:20 μm:50 μm:80 μm =6:5:15:4:634.94

Note: “5 μm:10 μm:20 μm:50 μm: 80 μm” refers to mass ratio of SiC powders with different median diameters

新窗口打开| 下载CSV


1.3 SiC陶瓷的成型与制备

采用BJ设备打印成型SiC素坯, 在900 ℃下脱黏, 1550 ℃下液相渗硅致密化烧结制备陶瓷, 具体成型制备流程如图1所示。打印参数参考文献[16-18]: 散粉速度为50 mm/s, 黏结剂饱和度为75%, 打印层厚为50 μm, 加热器横扫速度为25 mm/s, 辊子旋转速度为300 r/min。

图1

图1   BJ打印制备SiC陶瓷的工艺流程

Fig. 1   Flow chart of SiC ceramics by BJ process


1.4 材料表征

根据阿基米德排水法测得SiC素坯和陶瓷的体积密度(D)和开气孔率(P), 计算公式如式(1)和式(2)所示。采用场发射扫描电子显微镜(Scanning Electron Microscope, SEM, Hitachi SU8220, 日本)观察SiC素坯的断口形貌和陶瓷的抛光面形貌。采用万能材料试验机(Instron-5566, Instron Co. 美国) 测量素坯的抗弯性能和陶瓷的抗弯性能、弹性模量和断裂韧性。采用压汞仪(Quantachrome Instruments, Poremaster60, America)测试SiC素坯的孔径分布。采用X射线衍射(X-ray diffraction, XRD, D8 Advance, Bruker, 德国)进行物相的定性分析。

D=M1/(M2M3)
P=[(M2M1)/(M2M3)]×100%

其中, M1为样品干重, M2为样品充分吸水后在空气中质量(湿重), M3为样品水中质量(浮重)。

2 结果与讨论

2.1 级配对BJ打印SiC素坯性能的影响

选用表1所示的四组颗粒级配前后的粉体, 在相同的BJ打印参数下进行打印, 接着在900 ℃下进行脱黏得到SiC素坯试样。为了提高素坯的性能, 在后处理液相渗硅致密化之前进行一次PIP处理, 这是由于打印黏结剂中碳含量较少, PIP可以为素坯提供合适的碳源, 提高素坯的密度, 起到预增密的作用。本实验按PR和乙醇的质量比为1:1去配制浸渍裂解溶液, 四组BJ打印好的素坯, 经过一次PIP后测试力学性能, 得到级配前后粉体打印素坯PIP后的抗弯强度。PIP前后的素坯体积密度和开气孔率具体数值如表2所示, PIP后的素坯抗弯性能如图2所示。

表2   BJ打印素坯在PIP处理前后的体积密度和开气孔率

Table 2  Bulk densities and open porosities of BJ-printed SiC green body before and after PIP treatment

GroupBulk density/(g•cm-3)Open porosity/%
Before PIPAfter PIPBefore PIPAfter PIP
G01.236±0.0081.533±0.00561.12±0.4747.48±0.84
G11.470±0.0061.718±0.00953.19±0.4640.63±0.57
G21.313±0.0071.598±0.00359.72±0.2046.44±0.63
G31.284±0.0041.572±0.00759.04±0.1345.85±0.77

新窗口打开| 下载CSV


图2

图2   BJ打印素坯经一次PIP后的抗弯强度

Fig. 2   Flexual strength of BJ-printed green body after one PIP


表2可知, 纯20 μm打印的PIP前素坯体积密度达(1.236±0.008) g/cm3, 开气孔率达(61.12±0.47)%。级配后素坯的密度和气孔率均在一定程度上得到改善, 流动性最好的G1组, 其PIP前素坯体积密度达到(1.470±0.006) g/cm3, 开气孔率达(53.19±0.46)%。级配后的粉体比级配前的粉体流动性在一定程度上得到提升, 同时相同BJ打印参数下PIP后, 素坯性能也有一定改善。特别是通过颗粒级配调控后的 G1组, 抗弯强度达到(16.70±0.53) MPa, 强度比未级配20 μm SiC((7.74 ± 0.99) MPa)), 提升了约8.96 MPa。从级配后三种粉体打印的素坯性能可以发现, 级配后复合粉体的流动性与PIP后的素坯性能之间呈正相关, 即级配后流动性越好的粉体BJ打印后的试件, 经过一次PIP后的素坯性能也越好。由图3(e)可知, 级配之后各组的微分浸汞量峰值位置发生左移, 对应于孔径向小孔偏移。级配之后的各组SiC素坯孔径分布在5~15 μm之间。随着原料流动性由好变差, 最可几孔径分别为8.86、9.21和10.15 μm,中位孔径分别为5.26、7.61和8.35 μm, 而未级配的20 μm打印的SiC素坯最可几孔径为14.29 μm, 中位孔径为9.74 μm。这表明级配有利于减小素坯的孔径, 在某种程度上可以提升素坯的性能。随着原料流动性的变差, 素坯孔径呈现逐渐变大的趋势, 这是由于原料流动性变差, 堆积效果也随之变差, 粉体颗粒之间的间隙变大, 导致素坯的气孔也增大, 与前面的抗弯强度结果一致。

图3

图3   PIP后素坯的断口形貌(a~d)以及PIP后素坯的孔径分布(e)

Fig. 3   Fracture morphologies (a-d), and pore size distributions (e) of green bodies after PIP

(a) G0; (b) G1; (c) G2; (d) G3


图3(a~d)可知: 经过一次PIP处理后, 增碳剂PR热解后的残余碳以块状结构附着在SiC颗粒表面, 大部分填充在SiC大小颗粒接触部分的细孔之间。观察20 μm中位径原料打印的PIP后的素坯, 可以发现颗粒之间的接触较为紧密, 宏观孔隙较小, 而颗粒级配调控后打印的PIP后素坯, 由于大颗粒的加入, 根据Furnace不连续尺寸颗粒堆积理论[20], 大颗粒之间产生的空隙在填入小颗粒后形成密堆积, 从而减少宏观孔隙, 整体上PIP后素坯相对较均匀, 无明显的分层现象, 这种低孔隙的PIP后素坯可以防止在液相渗硅时出现大量的残余硅。

2.2 级配对BJ打印SiC陶瓷性能的影响

对比图4中级配前后的几组SiC陶瓷的体积密度和气孔率可知, 流动性越好的粉体, 制备的陶瓷致密度越好, 这与粉体堆积有很大的关联, 颗粒级配堆积的效果越好, 致密度越佳。其中, G1组的陶瓷致密性最佳, 密度为(2.655±0.001) g/cm3, 比纯20 μm的SiC的密度((2.590±0.006) g/cm3)提高了约0.065 g/cm3。结合表1可知, 粉体流动性原料最佳的粉体, 打印烧结后的陶瓷密度最高, 开孔率最小。

图4

图4   BJ打印SiC陶瓷的体积密度和开孔率

Fig. 4   Bulk densities and open porosities of BJ-printed SiC ceramics


图5可知, 随着级配后SiC颗粒的流动性提升, 抗弯强度和弹性模量均呈现一定程度的上升, 粉体流动性最好的G1组的抗弯强度达到(285±30) MPa, 弹性模量达到(243±12) GPa, 断裂韧性达到(2.54± 0.02) MPa·m1/2。以20 μm粉体为基准级配后的BJ打印的各组陶瓷力学性能均有所提高, 一定程度上来说, 原料级配有利于提高陶瓷的抗弯性能、弹性模量和断裂韧性等力学性能。

图5

图5   BJ打印SiC陶瓷的力学性能

Fig. 5   Mechanical properties of BJ-printed SiC ceramics

(a) Flexural strength; (b) Elastic modulus; (c) Fracture toughness


值得一提的是, Si的弹性模量为113 GPa, 低于单相SiC陶瓷的475 GPa[3], 根据基于加权平均值方法的复合材料的混合定律, BJ打印的SiC陶瓷相应的弹性模量随残余硅含量的增加而减小。残余硅的理论体积含量为53%, SiC陶瓷的理论弹性模量应该为283 GPa, 但G1组的实测弹性模量为(243±12) GPa, 这是由于孔隙和残余碳的存在使弹性模量低于理论值。

文献[16-18]报道的抗弯强度为200~500 MPa、弹性模量为~300 GPa, 本工作制备的陶瓷性能虽不及此, 但通过颗粒级配改性的方式对BJ打印SiC陶瓷进行性能优化, 采用的是一次PIP和液相渗硅, 与报道采用的多次PIP致密化和CVI工艺相比, 步骤更简便, 大大缩短了陶瓷的制备周期,成本降低, 经济优势显著, 并且制备得到的SiC陶瓷的性能更高且更可靠。

图6为SiC陶瓷基复合材料抛光面形貌, 由图可知, 以20 μm SiC打印的陶瓷颗粒较为均匀且晶粒尺寸较小, 级配之后的陶瓷由于大颗粒数增加, 颗粒之间的间距减小, 宏观上表现为堆积过程中的小颗粒填充大颗粒之间的间隙, 有利于陶瓷致密化, 从而使级配后的密度比未级配的要高, 这与陶瓷密度测试结果相一致。图中出现的少量白点为Al-Fe合金, 来自陶瓷制备过程中黏结剂PR所引入的金属杂质[3]

图6

图6   BJ打印SiC陶瓷的抛光面形貌

Fig. 6   Polished surface morphologies of BJ-printed SiC ceramics

(a) G0; (b) G1; (c) G2; (d) G3


BJ打印SiC复合材料的不同相对应的XRD衍射峰标记在图7中, 主要为闪锌矿结构的立方碳化硅3C-β-SiC, 还有少量的硅(Si)。Si相对较脆, 其含量会影响陶瓷试件的强度。图7显示级配G1组的Si衍射峰强度很低, 说明其Si含量比未级配的Si含量要少,在宏观上表现为级配后的抗弯强度和断裂韧性高于未级配体系, 这与前面的结果一致。

图7

图7   BJ打印SiC陶瓷的XRD图谱

Fig. 7   XRD patterns of BJ-printed SiC ceramics


3 结论

级配后的粉体比未级配的粉体流动性有一定程度上的提升, 在相同BJ打印参数下的素坯性能均有一定改善。特别是颗粒级配调控后的粉体G1组, 通过BJ打印并经一次PIP 处理后的素坯抗弯强度达到(16.70±0.53) MPa, 此种粉体在流动性达到最佳的同时, 强度比未级配的素坯提高了8.96 MPa。

级配后的G1组的陶瓷密度最佳为(2.655± 0.001) g/cm3, 比纯20 μm的SiC陶瓷密度((2.590± 0.006) g/cm3)提高了约0.065 g/cm3。级配后的各组SiC颗粒, 随着流动性变好, 制备的SiC陶瓷的抗弯强度和弹性模量均呈现一定程度的上升, 粉体流动性最好的G1组BJ打印陶瓷的实测抗弯强度达到(285±30) MPa, 弹性模量达到(243±12) GPa, 断裂韧性达到(2.54±0.02) MPa·m1/2

参考文献

HE R, ZHOU N, ZHANG K, et al.

Progress and challenges towards additive manufacturing of SiC ceramic

Journal of Advanced Ceramics, 2021, 10(4): 637.

DOI      [本文引用: 1]

Silicon carbide (SiC) ceramic and related materials are widely used in various military and engineering fields. The emergence of additive manufacturing (AM) technologies provides a new approach for the fabrication of SiC ceramic products. This article systematically reviews the additive manufacturing technologies of SiC ceramic developed in recent years, including Indirect Additive Manufacturing (Indirect AM) and Direct Additive Manufacturing (Direct AM) technologies. This review also summarizes the key scientific and technological challenges for the additive manufacturing of SiC ceramic, and also forecasts its possible future opportunities. This paper aims to provide a helpful guidance for the additive manufacturing of SiC ceramic and other structural ceramics.

KUMAR P, SRIVASTAVA V K.

Tribological behaviour of C/C-SiC composites—a review

Journal of Advanced Ceramics, 2016, 5: 1.

[本文引用: 1]

CHEN X, YIN J, LIU X, et al.

Effect of laser power on mechanical properties of SiC composites rapidly fabricated by selective laser sintering and direct liquid silicon infiltration

Ceramics International, 2022, 48(13): 19123.

DOI      URL     [本文引用: 3]

HUANG L Z, YIN J, CHEN X, et al.

Selective laser sintering of SiC green body with low binder content

Journal of Inorganic Materials, 2022, 37(3): 347.

DOI      [本文引用: 1]

Belonging to the family of SiC-based composites, Al/SiC has excellent mechanical and thermal properties, making it irreplaceable in high-power electronic devices, key cooling components of 5G base station, electric vehicles, high-speed brake pads, space probe operation devices, and other related fields featured by high technologies. The melt infiltration method, which can achieve near-net forming, has been recognized to be a favorable method for preparing Al/SiC composites to overcome the disadvantages of traditional processing. How to obtain a high-quality silicon carbide (SiC) ceramic green body is a key for the perfect melt infiltration method. Selective laser sintering (SLS) technology provides a new opportunity for a top grade ceramic forming process, which is rapid and efficient in realizing large-scale and complicated-shape without cast molding. Here, the SiC green body was obtained by SLS technique with thermoplastic phenolic resin as binder and its content lower than 15% (in volume) for the subsequent procedure to fabricate composite materials. However, low binder content results in low flexural strength. As the resin content increases to 25% (in volume), the strength of the SiC green body reaches 3.77 MPa with a strength increment of 702.1% for the SLS SiC green body. Spray drying was applied to form more spherical powder. Nevertheless, the porosity of the SiC green body is still high (71.18%), due to porous microstructure remaining in spray-dried powder, which leads to deteriorated strength of the green body.

CHEN Z W, LI Z Y, LI J J, et al.

3D printing of ceramics: a review

Journal of the European Ceramic Society, 2019, 39(4): 661.

DOI      [本文引用: 1]

Along with extensive research on the three-dimensional (3D) printing of polymers and metals, 3D printing of ceramics is now the latest trend to come under the spotlight. The ability to fabricate ceramic components of arbitrarily complex shapes has been extremely challenging without 3D printing. This review focuses on the latest advances in the 3D printing of ceramics and presents the historical origins and evolution of each related technique. The main technical aspects, including feedstock properties, process control, post-treatments and energy source material interactions, are also discussed. The technical challenges and advice about how to address these are presented. Comparisons are made between the techniques to facilitate the selection of the best ones in practical use. In addition, representative applications of the 3D printing of various types of ceramics are surveyed. Future directions are pointed out on the advancement on materials and forming mechanism for the fabrication of high-performance ceramic components.

BELOSLUDTSEV A, BUINOVSKIS D.

Significant increase of UV reflectivity of SiC galvanometer mirror scanners for the high-power laser applications

Optics & Laser Technology, 2021, 140: 107027.

[本文引用: 1]

LIU G, ZHANG X, YANG J, et al.

Recent advances in joining of SiC-based materials (monolithic SiC and SiCf/SiC composites): joining processes, joint strength, and interfacial behavior

Journal of Advanced Ceramics, 2019, 8: 19.

[本文引用: 1]

SONG M, HE Y.

Effects of die-pressing pressure and extrusion on the microstructures and mechanical properties of SiC reinforced pure aluminum composites

Materials & Design, 2010, 31(2): 985.

DOI      URL     [本文引用: 1]

SUZUKI T S, UCHIKOSHI T, SAKKA Y.

Effect of sintering conditions on microstructure orientation in α-SiC prepared by slip casting in a strong magnetic field

Journal of the European Ceramic Society, 2010, 30(14): 2813.

DOI      URL     [本文引用: 1]

LIU Y, HU C, FENG W, et al.

Microstructure and properties of diamond/SiC composites prepared by tape-casting and chemical vapor infiltration process

Journal of the European Ceramic Society, 2014, 34(15): 3489.

DOI      URL     [本文引用: 1]

CHEN X, YIN J, HUANG L, et al.

Microstructural tailoring, mechanical and thermal properties of SiC composites fabricated by selective laser sintering and reactive melt infiltration

Journal of Advanced Ceramics, 2023, 12(4): 830.

DOI      URL     [本文引用: 1]

唐杰, 杨勇, 黄政仁.

碳化硅陶瓷浆料基3D打印研究进展

材料导报, 2021, 35(S1): 172.

[本文引用: 1]

顾薛苏, 殷杰, 崔崇, .

Cf/SiC复合材料的原料高效改性及其3D打印制备研究进展

现代技术陶瓷, 2022, 43(4): 229.

[本文引用: 1]

LIU G, ZHANG X F, CHEN X L, et al.

Additive manufacturing of structural materials

Materials Science and Engineering: R: Reports, 2021, 145: 100596.

[本文引用: 1]

DU W, SINGH M, SINGH D.

Binder jetting additive manufacturing of silicon carbide ceramics: development of bimodal powder feedstocks by modeling and experimental methods

Ceramics International, 2020, 46(12): 19701.

DOI      URL     [本文引用: 1]

CRAMER C L, ELLIOTT A M, LARA-CURZIO E, et al.

Properties of SiC-Si made via binder jet 3D printing of SiC powder, carbon addition, and silicon melt infiltration

Journal of the American Ceramic Society, 2021, 104(11): 5467.

DOI      URL     [本文引用: 3]

CRAMER C L, ARMSTRONG H, FLORES-BETANCOURT A, et al.

Processing and properties of SiC composites made via binder jet 3D printing and infiltration and pyrolysis of preceramic polymer

International Journal of Ceramic Engineering & Science, 2020, 2(6): 320.

[本文引用: 3]

TERRANI K, JOLLY B, TRAMMELL M.

3D printing of high- purity silicon carbide

Journal of the American Ceramic Society, 2020, 103(3): 1575.

DOI      URL     [本文引用: 3]

XING Y Y, WU H B, LIU X J, et al.

Grain composition on solid-state-sintered SiC ceramics

Journal of Inorganic Materials, 2018, 33(11): 1167.

DOI      URL     [本文引用: 1]

LIU S, HA Z.

Prediction of random packing limit for multimodal particle mixtures

Powder Technology, 2002, 126(3): 283.

DOI      URL     [本文引用: 1]

/