无机材料学报, 2021, 36(5): 527-534 DOI: 10.15541/jim20200396

研究论文

氮掺杂中空碳球氧化物模拟酶性能研究

郑燕宁,1,2, 季军荣3, 梁雪玲1, 赖正杰1, 陈启帆1, 廖丹葵1,2

1.广西大学 化学化工学院, 南宁 530004

2.广西大学 广西碳酸钙产业化工程院, 广西钙基材料创新协同中心, 南宁 530004

3.崇左南方水泥有限公司 广西钙基材料创新协同中心, 崇左 532201

Performance of Nitrogen-doped Hollow Carbon Spheres as Oxidase Mimic

ZHENG Yanning,1,2, JI Junrong3, LIANG Xueling1, LAI Zhengjie1, CHENG Qifan1, LIAO Dankui1,2

1. School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China

2. Guangxi Cooperative Innovation Centre for Calcium-based Materials (GCICCM), Guangxi Engineering Academy for Calcium Carbonate Industry, Guangxi University, Nanning 530004, China

3. Guangxi Cooperative Innovation Centre for Calcium-based Materials (GCICCM), Chongzuo South Cement Co. LTD, Chongzuo 532201, China

通讯作者: 廖丹葵, 教授. E-mail:liaodk@gxu.edu.cn

收稿日期: 2020-07-4   修回日期: 2020-08-20   网络出版日期: 2020-10-19

基金资助: 国家自然科学基金(51372043)
广西自然科学基金(2017GXNSFDA198052)
广西大学钙基材料协同创新研究项目(20190962)

Corresponding authors: LIAO Dankui, professor. E-mail:liaodk@gxu.edu.cn

Received: 2020-07-4   Revised: 2020-08-20   Online: 2020-10-19

Fund supported: National Natural Science Foundation of China(51372043)
Foundation of Guangxi Natural Science(2017GXNSFDA198052)
Research Project on Collaborative Innovation of Calcium-based Materials in Guangxi University(20190962)

摘要

纳米酶由于其独特、高效、稳定的催化性质而在生化反应中备受关注。本研究以碳酸钙微球为绿色模板剂, 多巴胺为氮源与碳源, 合成了氮掺杂中空碳球(N-HCSs)。以3,3°,5,5°-四甲基联苯胺(TMB)为底物, 采用紫外分光光度法探究了N-HCSs的类氧化物酶的催化活性, 并研究其催化机理。结果表明, N-HCSs具有氧化物模拟酶催化活性, KOH活化后氮掺杂中空碳球的催化活性提高了3倍; N-HCSs氧化物模拟酶催化反应符合Michaelis-Menten方程, 活化前后的米氏常数Km分别为0.105和0.083, 对底物具有良好的亲和能力; N-HCSs氧化物模拟酶催化反应中起主要作用的活性氧基团是超氧阴离子(O2 •-)。本研究为高活性无机非金属类氧化物模拟酶的设计和制备提供了理论依据。

关键词: 氮掺杂中空碳球; 氧化物模拟酶; 反应机理

Abstract

Due to efficient performance and stability, nanozymes have recently attracted much attention in bioreaction. In this work, a facile approach for preparing N-doped hollow carbon sheres (N-HCSs) by using CaCO3 spheres as green template and polydoamine as nitrogen and carbon sources was reported. Morphologies and structures of the samples were characterized. Using TMB (3,3,5,5° tetramethylbenzidine) as a substrate, UV spectra photometry was used to investigate its oxidase-like activity and catalytic mechanism. The results showed that N-HCSs displayed oxidase-like activity. The oxidase-like activity of N-HCSs increased by three times after activation by KOH. These enzymes conform to the Michaelis-Menten kinetic equation, and the Km constant before and after activation were 0.105 and 0.083, respectively, indicating good affinity for substrates. The data demonstrate that it is superoxide anion (O2-) that plays a major role in catalytic reaction. This work data provides a theoretical basis for the design and preparation of high activity oxidase-mimicking enzymes.

Keywords: N-doped hollow carbon sheres; oxidase-like enzyme; reaction mechanism

PDF (4979KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

郑燕宁, 季军荣, 梁雪玲, 赖正杰, 陈启帆, 廖丹葵. 氮掺杂中空碳球氧化物模拟酶性能研究. 无机材料学报, 2021, 36(5): 527-534 DOI:10.15541/jim20200396

ZHENG Yanning, JI Junrong, LIANG Xueling, LAI Zhengjie, CHENG Qifan, LIAO Dankui. Performance of Nitrogen-doped Hollow Carbon Spheres as Oxidase Mimic. Journal of Inorganic Materials, 2021, 36(5): 527-534 DOI:10.15541/jim20200396

无机纳米材料具有高稳定性、可规模化制备、成本较低等特点[1]。自2007年首次报道纳米酶以来, 无机纳米材料不再被认为是生物惰性物质, 已经被证实具有类氧化物酶、过氧化物酶、过氧化氢酶、超氧化物歧化酶等催化活性[2,3,4,5]。纳米酶虽然克服了天然酶不稳定和昂贵的缺点, 但是部分纳米酶的催化效率仍然较低, 针对提高纳米酶催化效率的研究不断涌现[6]。大量研究发现, 纳米酶的活性可以通过控制纳米材料的尺寸、形貌和表面性质进行调控[7,8,9]。密度泛函理论(DFT)计算已证实纳米酶的催化活性依赖于晶体的尺寸和所暴露的晶面[10], 而通过一些元素(N、Co、Zn等)掺杂, 可有效提高碳基纳米酶的催化活性[11,12,13]。这些研究为提高纳米材料模拟酶的催化活性提供了理论依据。

目前, 纳米酶的研究主要集中在过氧化物模拟酶方向, 而氧化物模拟酶能够在没有H2O2的存在下催化底物3,3,5,5-四甲基联苯胺(TMB)发生显色反应, 应用前景广阔。目前报道的氧化物模拟酶主要集中在贵金属(Au[14]、Ag[15]、Pt[16]和Pd [17]等)纳米材料上, 但是由于其稀缺性而成本较高, 限制了进一步应用。而过渡金属氧化物(如CeO2[18]、MnO2[19]和Co3O4[20]等)也具有类氧化酶活性, 但其在纳米尺度上易团聚、不稳定, 导致其类氧化物酶催化活性较低。中空碳球具有低密度、大孔容、大比表面积, 在催化、吸附和生物传感等众多领域广泛应用[21,22]。氮元素被掺入到碳纳米材料石墨化晶格时产生晶格缺陷, 可为催化反应提供更多反应活性位点, 从而使氮掺杂碳材料成为一种优良的氧还原反应(ORR)催化剂[23,24]。氧化物模拟酶催化反应是基于氧还原反应(ORR)原理[4], 因此氮掺杂中空碳球有望成为高效氧化物模拟酶。硬模板法是制备中空碳球最简便有效的方法, 二氧化硅(SiO2)是报道较多的硬模板剂, 但是其在去除模板时需使用强腐蚀性的HF。因此, 采用更加绿色的途径制备氮掺杂中空多孔碳球氧化物模拟酶值得进一步探索。

本研究以价格低廉且易去除的碳酸钙微球作为模板剂, 多巴胺作为氮源与碳源, KOH为活化剂, 通过稀盐酸(HCl)去模板, 制备了氮掺杂中空碳球(N-HCSs)氧化物模拟酶。以TMB为底物, 研究其催化活性及机制。

1 实验方法

1.1 实验试剂

碳酸钙微球(CaCO3), 广西碳酸钙产业化工程院有限公司自制;多巴胺(PDA),分析纯,购自美国Sigma试剂公司; 3,3’,5,5’-四甲基联苯胺(TMB), 生物专用, 购自上海润捷化学试剂有限公司; 氢氧化钾(KOH)、盐酸(HCl)、乙酸(HAC)、乙酸钠(NaAC), 均为分析纯, 购自广东光华科技股份有限公司。

1.2 氮掺杂中空碳球(N-HCSs)的制备

取0.1 g碳酸钙微球和1.0 g盐酸多巴胺盐分别溶于500 mL去离了水中, 低转速搅拌10 min, 将两者混合加入1 mL氨水与10 mL乙醇, 在室温下低速搅拌5 h, 获得CaCO3@PDA微球, 将其置于管式炉内在氮气氛围中, 以5 ℃/min的速度从室温升至750 ℃, 恒温1 h, 自然冷却后用稀盐酸去除模板, 制备氮掺杂中空多孔碳球(N-HCS)。为了提高N-HCS的比表面积和孔容, 将适量的氢氧化钾(KOH)与CaCO3@PDA微球混匀后置于管式炉中进行碳化, 用稀盐酸去除模板后得到氮掺杂中空多孔碳球(N-HCS-1)。N-HCS和N-HCS-1两种材料统称为N-HCSs。

1.3 N-HCSs过氧化物模拟酶活性的研究

将1 mL的HAC-NaAC缓冲溶液(pH=4, 0.01 mol/L), 20 μL TMB乙醇溶液(0.042 mmol/L), 一定量的N-HCSs, 依次加入到2 mL的小试管中, 在30 ℃反应10 min, 过滤, 用UV-Vis分光光度计, 在波长652 nm下测定滤液的吸光值。分别考察溶液浓度(0.1~1 mg/mL)、pH(2~6)、温度(20~70 ℃)对N-HCS过氧化物模拟酶催化活性的影响。

1.4 稳态动力学及其机理研究

在最佳条件下, 对N-HCSs氧化物模拟酶分别进行动力学研究[25],采用Lineweaver-Burk作图分别求得N-HCSs过氧化物模拟酶的米氏常数(Km)和最大反应速度(Vmax)。

在体系中通入氮气, 加入异丙醇(IPA)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)分别作为•OH、H2O2和O2•-的清除剂, 探究N-HCSs氧化物模拟酶催化反应机理[26]

1.5 分析表征

采用日立5-3400型的扫描电子显微镜(SEM)和FEITECNAI-G2-F30的场发射透射电子显微镜(TEM)观察形貌。使用Brunauer-Emmett-Teller (BET)方法, 在77 K下通过Micromeritics-ASA2420氮气吸附脱附仪测定N2吸附-脱附曲线后, 计算N-HCSs比表面积。采用ESCALAB 250XI+X射线光电子能谱仪进行元素组成及化学态分析, X射线源为单色化Al Kα线源, 测试真空度为10-8 Pa。采用Burker A300电子顺磁共振波谱仪(ESR), 以BMPO(5-tert-Butoxycarbonyl-5-methyl-1-pyrroline-N- oxide, C10H17NO3)为自由基捕获剂, 测定氧化物模拟酶催化反应中生成的自由基。

2 结果与讨论

2.1 N-HCSs的形貌和结构分析

图1(a)为N-HCSs氧化物模拟酶的制备及其催化反应的示意图。如图1(b)所示, N-HCS具有良好的球形结构, 粒径均一, 约为510 nm。从N-HCS的EDX元素映射图可以看出, C、N、O三种元素在整个空间内分布均匀(图1(c~e))。

图1

图1   N-HCSs的形貌和元素分析

(a) Schematic presentation for the oxide enzyme mimetic activity of N-HCSs; (b) STEM image of N-HCS; (c) C, (d) N and (e) O EDX mappings of N-HCS

Fig. 1   Morphologies and element mappings of N-HCSs


通过对比图2(a, b)可知, 经过KOH活化后的少部分氮掺杂中空碳球虽然发生轻微的破损, 但仍然维持球形结构。在碱性条件下, 盐酸多巴胺氧化自聚, 形成包覆层, 得到具有壳核结构的CaCO3@PDA复合微球, 壳层厚度约为76 nm(图2(c))。在对CaCO3@PDA复合微球高温煅烧过程中CaCO3分解生成CaO和大量CO2, 故碳酸钙微球具有模板与扩孔双重功能[27], 煅烧产物经过稀酸和水洗涤去除残余的CaO, 得到的中空多孔氮掺杂碳球(N-HCSs), 碳化去模板后壳层发生收缩, 壳层厚度约为60 nm, 同时, 也可以观察到N-HCS的内部具有丰富的孔状结构(图2(d))。

图2

图2   (a)N-HCS和(b)N-HCS-1的SEM照片; (c)CaCO3@PDA和(d)N-HCS的TEM照片

Fig. 2   SEM images of (a) N-HCS and (b) N-HCS-1, and TEM images of (c) CaCO3@PDA and (d) N-HCS


N-HCSs的XPS表征结果如图3所示, N-HCSs主要含有C、N、O三种元素。与N-HCS相比, N-HCS-1的C、N含量增加, O含量下降(图3(a)), 说明KOH活化扩孔的同时加快了材料表面含氧官能团的脱除[28]。从图3(b, c)可知, 位于N1s光谱398.5、400.1和401.1 eV的三个峰, 分别对应于吡啶氮、吡咯氮和石墨氮。KOH活化使得吡啶氮和吡咯氮含量分别由原来的18.73%和56.54%增加到20.21%和61.23%, 而石墨氮含量则由24.73%下降至18.56%(图3(d))。在氮掺杂碳材料中, 氧还原反应(ORR)的活性位点是与吡啶氮和吡咯氮相邻的具有路易斯碱度的碳原子, 则吡啶氮和吡咯氮的含量相应增加, 可为ORR反应提供更多活性位点[29], 从而促进O2分子的吸附, 加速活性氧(ROS)的生成, 提高其催化氧化能力。

图3

图3   (a)N-HCS和N-HCS-1的XPS全谱, (b)N-HCS和(c)N-HCS-1的N1s谱, (d)N-HCS和N-HCS-1的N元素组成

Fig. 3   (a) XPS full spectra of N-HCS and N-HCS-1; N1s spectra of (b) N-HCS and (c) N-HCS-1; (d) N species contents of N-HCS and N-HCS-1


图4(a, b)是N-HCSs的N2吸附脱附等温曲线和HK模型孔径分布图。由图4(a)可知, N-HCS和N-HCS-1表现出IV型等温线的特征, 表明两者都具有分级多孔结构。根据图4(b)样品的HK模型孔径分布图可知, 经KOH活化后的N-HCS-1微孔含量下降, 介孔含量增加, 可减小底物与催化剂之间的传质阻力。由表1数据可知, N-HCS-1的比表面积和孔容均高于N-HCS, 故N-HCS-1能提供更多的催化反应活性位点。

图4

图4   (a)N-HCS和N-HCS-1的N2吸附-脱附等温曲线及(b)HK模型孔径分布图

Fig. 4   (a) Nitrogen absorption-desorption isotherm curves of N-HCS and N-HCS-1, (b) HK model corresponding pore size distribution curves of N-HCS and N-HCS-1


表1   N-HCS和N-HCS-1材料的孔结构参数

Table 1  Pore structure parameters of N-HCS and N-HCS-1

SampleSpecfic suface/(m2•g-1)Vt/
(cm3•g-1)
Vm/
(cm3•g-1)
Sm/
(m2•g-1)
(Sm/St)/
%
LangmuirBET
N-HCS685.6490.10.6510.109230.5145.49
N-HCS-1730.0518.40.7320.111228.1644.01

新窗口打开| 下载CSV


2.2 N-HCSs氧化物模拟酶活性的探究

选择3,3°,5,5°-四甲基联苯胺(TMB)作为显色底物, N-HCSs作为催化剂, 探究其氧化物模拟酶的催化特性。如图5(a)所示, TMB单独在NaAC-HAC缓冲溶液中, 不能发生显色反应, 而N-HCSs能够催化TMB氧化成蓝色的产物oxTMB, 在652 nm处有一个特征吸收峰, 说明N-HCSs具有氧化物模拟酶活性, 且通过KOH活化扩孔有效提高了氮掺杂中空碳球氧化物模拟酶的催化活性。

图5

图5   (a)不同体系的紫外-可见吸收光谱, (b)催化剂浓度、(c)pH和(d)温度对N-HCSs氧化物模拟酶活性的影响

Fig. 5   (a) UV-Vis absorption spectra of different systems, and effects of (b) catalyst concentration, (c) pH and (d) temperature on the oxidase-like activity of N-HCSs


氧化物模拟酶的催化活性与其浓度、pH、温度均有关。由图5(b)可知, 随着N-HCSs的浓度增加, 其类氧化物酶催化活性不断增强, 当N-HCSs大于0.8 mg/mL时, 催化活性呈下降趋势, 这可能是由于催化剂浓度过高时, 容易团聚, 导致底物与催化剂之间的传质阻力增加, 不利于催化反应进行[30]。pH为3时N-HCSs氧化物模拟酶的催化活性最高(图5(c)), 相比贵金属基氧化物模拟酶(最适pH为4.5), 其催化反应的最适pH更偏酸性。在反应温度为20~70 ℃较大的温度范围内, N-HCSs氧化物模拟酶仍然可以保留90%的催化活性(图5(d)), 说明N-HCSs氧化物模拟酶对温度的适应性明显优于天然氧化物酶。此外, N-HCSs氧化物模拟酶具有良好的稳定性, 可多次循环使用(图6), 故其在实际应用中具有较大的潜力。

图6

图6   N-HCS和N-HCS-1稳态动力学分析

Fig. 6   Steady-state kinetic assay of N-HCS and N-HCS-1


2.3 稳态动力学和催化机理研究

通过改变体系中TMB浓度对其稳态动力学进行研究, 由图6可知, N-HCSs氧化物模拟酶催化反应遵循典型的Michaelis-Menten动力学方程, 通过Lineweaver-Burk作图后分别计算出N-HPCS和N-HPCS-1的米氏常数(Km)和最大反应速率(Vmax), 结果列于表2。N-HCS-1的米氏常数小于N-HCS, 表明KOH活化可增强材料对底物TMB的亲和能力。相比文献所报道的氮掺杂碳球[4], 中空多孔氮掺杂碳球对底物TMB的亲和能力显著增强, 这可归因于其中空的多级多孔结构。

表2   N-HCSs与其它氧化物模拟酶动力学参数的比较

Table 2  Comparison of the Km and Vmax between N-HCSs and other oxidase-like

CatalystSubstrateKm/
(mmol•L-1)
Vmax/(×10-8, mol•L-1•s-1)Ref.
N-PCSTMB0.0955.20[4]
His@AuNCsTMB0.0416.21[31]
Pt Au DNPsTMB0.222.82[32]
Acr+-MesTMB0.1292.68[33]
N-HCSTMB0.10494.69This work
N-HCS-1TMB0.08255.98This work

新窗口打开| 下载CSV


N-HCSs氧化物模拟酶的催化特性从本质上应该与体系中的O2及生成的活性氧(ROS)有关[34]。在体系中通入N2, 如图7(a)所示, 当N-HCSs处于N2环境中时, 类氧化物酶活性因缺氧而被抑制, 这说明O2在N-HCSs氧化物模拟酶催化反应中起重要作用, 且对N-HCS-1的催化活性抑制效果更明显, 这验证了N-HCS-1能为O2吸附提供更多的吸附位点的推测。在体系引入异丙醇和过氧化氢酶(CAT)后对催化反应的影响不大(图7(b~c)), 而在加入超氧化物歧化酶(SOD)后, N-HCSs氧化物模拟酶活性明显降低(图7(d)), 表明O2•-是N-HCSs氧化物模拟酶催化反应中主要活性氧基团, 与已报道的贵金属基、金属氧化物基氧化物模拟酶的催化机理相一致[35,36]

图7

图7   在体系中(a)通入氮气后的吸收光图谱, 及加入不同活性氧清除剂(b)异丙醇(IPA)、(c)过氧化氢酶(CAT)、(d)超氧化物歧化酶(SOD)对N-HCS和N-HCS-1类氧化物酶活性的影响

Fig. 7   (a) Absorption spectra of the solution containing TMB and N-HCS and N-HCS-1 under N2-saturated conditions, and effect of scavengers (b) IPA, (c) CAT and (d) SOD on the catalytic oxidation of TMB by the N-HCS and N-HCS-1


为了进一步鉴定N-HCSs氧化物模拟酶的催化活性是否与生成O2•-相关, 采用ESR, 以BMPO(5-tert-Butoxycarbonyl-5-methyl-1-pyrroline- N-oxide, C10H17NO3)作为自旋阱来探测O2•-的生成。如图8(a)所示, N-HCS和N-HCS-1在pH为3的HAC-NaAC缓冲溶液中放置10 min后的ESR图谱均显示BMPO-O2•-加合物的六重特征峰, 说明两者体系中生成了O2•-。可以观察到N-HCS-1的特征峰明显强于N-HCS, 这说明N-HCS-1催化生成O2•-的能力较强。

图8

图8   (a)N-HCSs氧化物模拟酶的ESR图谱及其(b)催化机理图

Fig. 8   (a) ESR spectra and (b) catalytic mechanism diagram for the oxidase-like activity of the N-HCSs


综上, N-HCSs氧化物模拟酶的催化反应机制可以解释为:N-HCSs将溶解的O2吸附到表面, 催化生成O2•-, O2•-氧化底物TMB, 生成蓝色oxTMB的产物(图8(b))。N-HCS-1具有更高的类氧化物酶活性可归因于其能提供更多的反应活性位点, 可促进O2的吸附, 加速O2•-的生成。

3 结论

本研究采用硬模板法制备了氮掺杂中空碳球(N-HCSs)氧化物模拟酶, 研究其类酶催化活性及催化机理。结果表明, 经过KOH活化的N-HCS-1具有高含氮量、高比表面积和大孔容等特性, 因此其类氧化物酶催化活性较N-HCS更强。N-HCSs氧化物模拟酶的最佳催化条件为催化剂浓度0.8 mg/L、pH 3.0、50 ℃。N-HCSs类氧化物酶催化氧化反应中, 超氧阴离子(O2•-)是主要的活性氧基团。由于N-HCSs氧化物模拟酶催化反应需要在强酸条件下才能进行, 故如何拓宽该催化反应的最优酸碱度还有待进一步研究。

参考文献

LIN Y, REN J, QU X, et al.

Catalytically active nanomaterials: a promising candidate for artificial enzymes

Accounts of Chemical Research, 2014,47(4):1097-1105.

DOI      URL     PMID      [本文引用: 1]

Natural enzymes, exquisite biocatalysts mediating every biological process in living organisms, are able to accelerate the rate of chemical reactions up to 10(19) times for specific substrates and reactions. However, the practical application of enzymes is often hampered by their intrinsic drawbacks, such as low operational stability, sensitivity of catalytic activity to environmental conditions, and high costs in preparation and purification. Therefore, the discovery and development of artificial enzymes is highly desired. Recently, the merging of nanotechnology with biology has ignited extensive research efforts for designing functional nanomaterials that exhibit various properties intrinsic to enzymes. As a promising candidate for artificial enzymes, catalytically active nanomaterials (nanozymes) show several advantages over natural enzymes, such as controlled synthesis in low cost, tunability in catalytic activities, as well as high stability against stringent conditions. In this Account, we focus on our recent progress in exploring and constructing such nanoparticulate artificial enzymes, including graphene oxide, graphene-hemin nanocomposites, carbon nanotubes, carbon nanodots, mesoporous silica-encapsulated gold nanoparticles, gold nanoclusters, and nanoceria. According to their structural characteristics, these enzyme mimics are categorized into three classes: carbon-, metal-, and metal-oxide-based nanomaterials. We aim to highlight the important role of catalytic nanomaterials in the fields of biomimetics. First, we provide a practical introduction to the identification of these nanozymes, the source of the enzyme-like activities, and the enhancement of activities via rational design and engineering. Then we briefly describe new or enhanced applications of certain nanozymes in biomedical diagnosis, environmental monitoring, and therapeutics. For instance, we have successfully used these biomimetic catalysts as colorimetric probes for the detection of cancer cells, nucleic acids, proteins, metal ions, and other small molecules. In addition, we also introduce three exciting advances in the use of efficient modulators on artificial enzyme systems to improve the catalytic performance of existing nanozymes. For example, we report that graphene oxide could serve as a modulator to greatly improve the catalytic activity of lysozyme-stabilized gold nanoclusters at neutral pH, which will have great potential for applications in biological systems. We show that, through the incorporation of modulator into artificial enzymes, we can offer a facile but highly effective way to improve their overall catalytic performance or realize the catalytic reactions that were not possible in the past. We expect that nanozymes with unique properties and functions will attract increasing research interest and lead to new opportunities in various fields of research.

GAO L, ZHUANG J, NIE L, et al.

Intrinsic peroxidase-like activity of ferromagnetic nanoparticles

Nature Nanotechnology, 2007,2(9):577-583.

DOI      URL     PMID      [本文引用: 1]

Nanoparticles containing magnetic materials, such as magnetite (Fe3O4), are particularly useful for imaging and separation techniques. As these nanoparticles are generally considered to be biologically and chemically inert, they are typically coated with metal catalysts, antibodies or enzymes to increase their functionality as separation agents. Here, we report that magnetite nanoparticles in fact possess an intrinsic enzyme mimetic activity similar to that found in natural peroxidases, which are widely used to oxidize organic substrates in the treatment of wastewater or as detection tools. Based on this finding, we have developed a novel immunoassay in which antibody-modified magnetite nanoparticles provide three functions: capture, separation and detection. The stability, ease of production and versatility of these nanoparticles makes them a powerful tool for a wide range of potential applications in medicine, biotechnology and environmental chemistry.

WEI X, CHEN J, ALI M C, et al.

Cadmium cobaltite nanosheets synthesized in basic deep eutectic solvents with oxidase-like, peroxidase-like, and catalase-like activities and application in the colorimetric assay of glucose

Microchimica Acta, 2020,187(6):314-325.

URL     PMID      [本文引用: 1]

FAN K, XI J, FAN L, et al.

In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy

Nature Communications, 2018,9:1440.

URL     PMID      [本文引用: 3]

CHEN Z, YIN J J, ZHOU Y T, et al.

Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity

ACS Nano, 2012,6(5):4001-4012.

DOI      URL     PMID      [本文引用: 1]

Iron oxide nanoparticles (IONPs) are frequently used in biomedical applications, yet their toxic potential is still a major concern. While most studies of biosafety focus on cellular responses after exposure to nanomaterials, little is reported to analyze reactions on the surface of nanoparticles as a source of cytotoxicity. Here we report that different intracellular microenvironment in which IONPs are located leads to contradictive outcomes in their abilities to produce free radicals. We first verified pH-dependent peroxidase-like and catalase-like activities of IONPs and investigated how they interact with hydrogen peroxide (H(2)O(2)) within cells. Results showed that IONPs had a concentration-dependent cytotoxicity on human glioma U251 cells, and they could enhance H(2)O(2)-induced cell damage dramatically. By conducting electron spin resonance spectroscopy experiments, we showed that both Fe(3)O(4) and gamma-Fe(2)O(3) nanoparticles could catalyze H(2)O(2) to produce hydroxyl radicals in acidic lysosome mimic conditions, with relative potency Fe(3)O(4) > gamma-Fe(2)O(3), which was consistent with their peroxidase-like activities. However, no hydroxyl radicals were observed in neutral cytosol mimic conditions with both nanoparticles. Instead, they decomposed H(2)O(2) into H(2)O and O(2) directly in this condition through catalase-like activities. Transmission electron micrographs revealed that IONPs located in lysosomes in cells, the acidic environment of which may contribute to hydroxyl radical production. This is the first study regarding cytotoxicity based on their enzyme-like activities. Since H(2)O(2) is continuously produced in cells, our data indicate that lysosome-escaped strategy for IONP delivery would be an efficient way to diminish long-term toxic potential.

WEI H, WANG E.

Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes

Chemical Society Reviews, 2013,42(14):6060-6093.

DOI      URL     PMID      [本文引用: 1]

Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).

ZHANG X, MAO X, LI S Q, et al.

Tuning the oxidase mimics activity of manganese oxides via control of their growth conditions for highly sensitive detection of glutathione

Sensors and Actuators B-Chemical, 2018,258:80-87.

[本文引用: 1]

WANG Y, ZHANG Z, JIA G, et al.

Elucidating the mechanism of the structure-dependent enzymatic activity of Fe-N/C oxidase mimic

Chemical Communications, 2019,55(36):5271-5274.

DOI      URL     PMID      [本文引用: 1]

Herein, we develop an Fe-N/C-CNT nanomaterial with Fe-N3 units as a paradigm for excellent oxidase mimics by theoretical prediction and experimental implementation. The mechanism of the structure-dependent enzymatic activity is systematically investigated and elucidated from the perspective of the different configurations of M-Nx models (x = 0, 3, 4, and 5; M = Fe, Co, and Ni).

HE W, HAN X, JIA H, et al.

AuPt alloy nanostructures with tunable composition and enzyme-like activities for colorimetric detection of bisulfide

Scientific Reports, 2017,7:40103.

DOI      URL     PMID      [本文引用: 1]

Tuning the enzyme-like activity and studying the interaction between biologically relevant species and nano-enzymes may facilitate the applications of nanostructures in mimicking natural enzymes. In this work, AuPt alloy nanoparticles (NPs) with varying compositions were prepared through a facile method by co-reduction of Au(3+) and Pt(2+) in aqueous solutions. The composition could be tuned easily by adjusting the molar ratios of added Pt(2+) to Au(3+). It was found that both peroxidase-like and oxidase-like activity of AuPt alloy NPs were highly dependent on the alloy compositions, which thus suggesting an effective way to tailor their catalytic properties. By investigating the inhibitory effects of HS(-) on the enzyme-like activity of AuPt alloy NPs and natural enzyme, we have developed a method for colorimetric detection of HS(-) and evaluation of the inhibiting effects of inhibitors on natural and artificial enzymes. In addition, the responsive ability of this method was influenced largely by the composition: AuPt alloy NPs show much lower limit of detection for HS(-) than Pt NPs while Pt NPs show wider linear range than AuPt alloy NPs. This study suggests the facile way not only for synthesis of alloy nanostructures, but also for tuning their catalytic activities and for use in bioanalysis.

GE C, FANG G, SHEN X, et al.

Facet energy versus enzyme-like activities: the unexpected protection of palladium nanocrystals against oxidative damage

ACS Nano, 2016,10(11):10436-10445.

DOI      URL     PMID      [本文引用: 1]

To develop nanomaterials as artificial enzymes, it is necessary to better understand how their physicochemical properties affect their enzyme-like activities. Although prior research has demonstrated that nanomaterials exhibit tunable enzyme-like activities depending on their size, structure, and composition, few studies have examined the effect of surface facets, which determine surface energy or surface reactivity. Here, we use electron spin-resonance spectroscopy to report that lower surface energy {111}-faceted Pd octahedrons have greater intrinsic antioxidant enzyme-like activity than higher surface energy {100}-faceted Pd nanocubes. Our in vitro experiments found that those same Pd octahedrons are more effective than Pd nanocubes at scavenging reactive oxygen species (ROS). Those reductions in ROS preserve the homogeneity of mitochondrial membrane potential and attenuate damage to important biomolecules, thereby allowing a substantially higher number of cells to survive oxidative challenges. Our computations of molecular mechanisms for the antioxidant activities of {111}- and {100}-faceted Pd nanocrystals, as well as their activity order, agree well with experimental observations. These findings can guide the design of antioxidant-mimicking nanomaterials, which could have therapeutic or preventative potential against oxidative stress related diseases.

HU Y, GAO X J, ZHU Y, et al.

Nitrogen-doped carbon nanomaterials as highly active and specific peroxidase mimics

Chemistry of Materials, 2018,30(18):6431-6439.

[本文引用: 1]

MU J, LI J, ZHAO X, et al.

Cobalt-doped graphitic carbon nitride with enhanced peroxidase-like activity for wastewater treatment

RSC Advances, 2016,6(42):35568-35576.

[本文引用: 1]

AHMWD A, JOHN P, NAWAZ M H, et al.

Zinc-doped mesoporous graphitic carbon nitride for the colorimetric detection of hydrogen peroxide

ACS Nano Materials, 2019,2(8):5156-5168.

[本文引用: 1]

ZHANG H, LIANG X, HAN L, et al.

“Non-naked” gold with glucose oxidase-like activity: a nanozyme for tandem catalysis

Small, 2018,14(44):e1803256.

URL     PMID      [本文引用: 1]

LI R, LEI C, ZHAO X E, et al.

A label-free fluorimetric detection of biothiols based on the oxidase-like activity of Ag+ ions

Sectrochimica Acta art A: Molecular & Biomolecular Spectroscopy, 2018,188:20-25.

[本文引用: 1]

FENG J Y, HUANG P, WU F Y, et al.

Gold-platinum bimetallic nanocluster with enhanced peroxidase-like activity and its integrated agarose hydrogel-based sensing platform for colorimetric analysis of glucose level in serum

Analyst., 2017,142(21):4106-4115.

URL     PMID      [本文引用: 1]

SHEN X, LIU W, GAO X, et al.

Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: a general way to the activation of molecular oxygen

Journal of the American Chemical Society, 2015,137(50):15882-15891.

URL     PMID      [本文引用: 1]

HUANG L, ZHANG W, CHEN K, et al.

Facet-selective response of trigger molecule to CeO2 {110} for up-regulating oxidase-like activity

Chemical Engineering Journal, 2017,330(17):746-752.

[本文引用: 1]

ZHAO M, TAO Y, HUANG W, et al.

Reversible pH switchable oxidase-like activities of MnO2 nanosheets for a visual molecular majority logic gate

Physical Chemistry Chemical, 2018,20(45):28644-28648.

[本文引用: 1]

FAN Y, SHI W, ZHANG X, et al.

Mesoporous material-based manipulation of the enzyme-like activity of CoFe2O4 nanoparticles

Journal of Materials Chemistry A, 2014,2(8):2482-2486.

[本文引用: 1]

DU J, LIU L, YU Y, et al.

Hollow carbon sphere with tunable structure by encapsulation pyrolysis synchronous deposition for cefalexin adsorption

Journal of Inorganic Materials, 2020,35(5):608-616.

[本文引用: 1]

WANG N, SONG H, REN H, et al.

Partly nitrogenized nickel oxide hollow spheres with multiple compositions for remarkable electrochemical performance

Chemical Engineering Journal, 2019,358:531-539.

[本文引用: 1]

GONG K, DU F, XIA Z, et al.

Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction

Science, 2009,323(5915):760-764.

DOI      URL     PMID      [本文引用: 1]

The large-scale practical application of fuel cells will be difficult to realize if the expensive platinum-based electrocatalysts for oxygen reduction reactions (ORRs) cannot be replaced by other efficient, low-cost, and stable electrodes. Here, we report that vertically aligned nitrogen-containing carbon nanotubes (VA-NCNTs) can act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction in alkaline fuel cells. In air-saturated 0.1 molar potassium hydroxide, we observed a steady-state output potential of -80 millivolts and a current density of 4.1 milliamps per square centimeter at -0.22 volts, compared with -85 millivolts and 1.1 milliamps per square centimeter at -0.20 volts for a platinum-carbon electrode. The incorporation of electron-accepting nitrogen atoms in the conjugated nanotube carbon plane appears to impart a relatively high positive charge density on adjacent carbon atoms. This effect, coupled with aligning the NCNTs, provides a four-electron pathway for the ORR on VA-NCNTs with a superb performance.

ZHANG Y, YANG H, CHI Q, et al.

Nitrogen-doped carbon supported nickel nanoparticles: a robust catalyst to bridge the hydrogenation of nitriles and the reductive amination of carbonyl compounds for the synthesis of primary amines

ChemSusChem, 2019,12(6):1246-1255.

DOI      URL     PMID      [本文引用: 1]

An efficient method was developed for the synthesis of primary amines either from the hydrogenation of nitriles or reductive amination of carbonyl compounds. The reactions were catalyzed by nitrogen-doped mesoporous carbon (MC)-supported nickel nanoparticles (abbreviated as MC/Ni). The MC/Ni catalyst demonstrated high catalytic activity for the hydrogenation of nitriles into primary amines in high yields (81.9-99 %) under mild reaction conditions (80 degrees C and 2.5 bar H2 ). The MC/Ni catalyst also promoted the reductive amination of carbonyl compounds for the synthesis of primary amines at 80 degrees C and 1 bar H2 . The hydrogenation of nitriles and the reductive amination proceeded through the same intermediates for the generation of the primary amines. To the best of our knowledge, no other heterogeneous non-noble metal catalysts have been reported for the synthesis of primary amines under mild conditions, both from the hydrogenation of nitriles and reductive amination.

FAN L, XU X, ZHU C, et al.

Tumor catalytic-photothermal therapy with yolk-shell Gold@Carbon nanozymes

ACS Applied Materials & Interfaces, 2018,10(5):4502-4511.

URL     PMID      [本文引用: 1]

LIANG H W, ZHUANG X, SEBASTIAN B, et al.

Hierarchically porous carbons with optimized nitrogen doping as highly active electro-catalysts for oxygen reduction

Nature Communications, 2014,5:4973.

URL     PMID      [本文引用: 1]

HE X, LIU P, LIU J, et al.

Facile synthesis of hierarchical N-doped hollow porous carbon whiskers with ultrahigh surface area via synergistic inner-outer activation for casein hydrolysate adsorption

Journal of Materials Chemistry B, 2017,5:9211-9218.

URL     PMID      [本文引用: 1]

MISTAR E M, ALFATAH T, SUPARDAN M D.

Synthesis and characterization of activated carbon from Bambusa vulgaris striata using two-step KOH activation

Journal of Materials Research and Technology, 2020,9(3):6278-6286.

[本文引用: 1]

WU T, MA Z, LI P, et al.

Bifunctional colorimetric biosensors via regulation of the dual nanoenzyme activity of carbonized FeCo-ZIF

Sensors & Actuators B Chemical, 2019,290:357-363.

[本文引用: 1]

WANG H, LI S, SI Y, et al.

Recyclable enzyme mimic of cubic Fe3O4 nanoparticles loaded on graphene oxide-dispersed carbon nanotubes with enhanced peroxidase-like catalysis and electrocatalysis

Journal of Materials Chemistry B, 2016,2:4442-4448.

URL     PMID      [本文引用: 1]

LIU L, DU J, LIU W E, et al.

Enhanced His@AuNCs oxidase-like activity by reduced graphene oxide and its application for colorimetric and electrochemical detection of nitrite

Analytical & Bioanalytical Chemistry, 2019,411(10):2189-2200.

URL     PMID     

CHENG Q, YANG Y, YANG L L, et al.

Pt-Au dendritic nanoparticles with high oxidase-like activity for detection of ascorbic acid

Journal of Inorganic Materials, 2020,35(10):1169-1176.

DU J, WANG J, HUANG W, et al.

Visible light-activatable oxidase mimic of 9-mesityl-10-methylacridinium ion for colorimetric detection of biothiols and logic operations

Analytical Chemistry, 2018,90(16):9959-9965.

URL     PMID     

WANG Y, ZHANG Z, JIA G, et al.

Elucidating the mechanism of the structure-dependent enzymatic activity of Fe-N/C oxidase mimics

Chemical Communications, 2019,55:5271-5274.

DOI      URL     PMID      [本文引用: 1]

Herein, we develop an Fe-N/C-CNT nanomaterial with Fe-N3 units as a paradigm for excellent oxidase mimics by theoretical prediction and experimental implementation. The mechanism of the structure-dependent enzymatic activity is systematically investigated and elucidated from the perspective of the different configurations of M-Nx models (x = 0, 3, 4, and 5; M = Fe, Co, and Ni).

CHEN M, WANG Z, SHU J, et al.

Mimicking a natural enzyme system: cytochrome c oxidase-like activity of Cu2O nanoparticles by receiving flectrons from cytochrome

Inorganic Chemistry, 2017,56(16):9400-9403.

URL     PMID      [本文引用: 1]

LIU J, HU X, HOU S, et al.

Au@Pt core/shell nanorods with peroxidase and ascorbate oxidase-like activities for improved detection of glucose

Sensors & Actuators B Chemical, 2012,166/167:708-714.

[本文引用: 1]

/