无机材料学报  2015 , 30 (8): 793-801 https://doi.org/10.15541/jim20140646

Orginal Article

洋葱碳的制备与应用研究进展

郑艳彬12, 姜志刚1, 朱品文1

1. 吉林大学 超硬材料国家重点实验室, 长春 130012
2. 长春中医药大学, 长春 130117

Development on the Preparation and Application of Onion-like Carbon

ZHENG Yan-Bin12, JIANG Zhi-Gang1, ZHU Pin-Wen1

1. State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
2. Changchun University of Chinese Medicine, Changchun 130117, China

中图分类号:  TQ127

文献标识码:  A

文章编号:  1000-324X(2015)08-0793-09

通讯作者:  朱品文, 教授. E-mail: zhupw@jlu.edu.cn; 姜志刚, 教授. E-mail: jiangzg@jlu.edu.cn朱品文, 教授. E-mail: zhupw@jlu.edu.cn; 姜志刚, 教授. E-mail: jiangzg@jlu.edu.cn

收稿日期: 2014-12-16

修回日期:  2015-03-24

网络出版日期:  2015-08-20

版权声明:  2015 无机材料学报编委会 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

基金资助:  国家自然科学基金(51172091)教育部新世纪优秀人才支持计划(NCET-12-0240)国家基础科学人才培养基金(J1103202)吉林省科技发展计划项目(20130101023JC)National Natural Science Foundation of China(51172091)Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-12-0240)National Found for Fostering Talents of Basic Science(J1103202)Jilin Province Science and Technology Development Program, China(20130101023JC)

作者简介:

作者简介: 郑艳彬(1983-), 男, 讲师, 博士研究生. E-mail: zhengyb14@mails.jlu.edu.cn

展开

摘要

洋葱碳独特的结构, 使其具有优异的物理化学性能。本文首先介绍了洋葱碳的分类和结构, 对几种传统的制备方法(包括电弧放电法、等离子体、电子束辐射、化学气相沉积、纳米金刚石真空退火、热解法)的优缺点进行归纳、总结。其次, 介绍了近年来发展起来的制备方法。随后,对近年来洋葱碳在锂离子二次电池负极、染料敏化太阳能电池对电极、电化学储氢电极、超级电容器电极、摩擦和磨损、催化领域的应用做一概述。最后, 指出了目前洋葱碳在制备和应用方面的不足, 对今后的研究做了展望。

关键词: 洋葱碳 ; 制备方法 ; 应用 ; 研究进展

Abstract

Due to unique structure, onion-like carbon has excellent physical and chemical properties that brodens the application in carbon and carbon-based composite materials. The classification and the structure of onion-like carbon were firstly introduced. Its advantages and disadvantages of traditional preparation methods, including arc discharge, plasma, electron-beam radiation, chemical vapor deposition, nanodiamond annealing in vacuum, thermolysis, were summarized. Then, some new synthetic methods developed in recent years were also presented. Subsequently, the application of onion-like carbon on anode materials of lithium ion secondary battery, counter electrode materials of dye-sensitized solar cell, electrodes materials of electrochemical hydrogen storage and super capacitor, friction and wear, and catalyst fields was summarized. Finally, deficiencies of preparation and application on onion-like carbon were pointed out and future research were put forward.

Keywords: onion-like carbon ; preparation methods ; application ; research progress

0

PDF (515KB) 元数据 多维度评价 相关文章 收藏文章

本文引用格式 导出 EndNote Ris Bibtex

郑艳彬, 姜志刚, 朱品文. 洋葱碳的制备与应用研究进展[J]. , 2015, 30(8): 793-801 https://doi.org/10.15541/jim20140646

ZHENG Yan-Bin, JIANG Zhi-Gang, ZHU Pin-Wen. Development on the Preparation and Application of Onion-like Carbon[J]. 无机材料学报, 2015, 30(8): 793-801 https://doi.org/10.15541/jim20140646

洋葱碳(Onion-like Carbon, 简称OLC), 又称为碳纳米洋葱(Carbon Nano-onions, 简称CNOs), 其尺寸大约在3~50 nm[1], 是继C60、碳纳米管(Carbon Nano-tubes, 简称CNTs)之后, 富勒烯家族的新成员。洋葱碳按其结构一般可分为两类: 中空结构的洋葱碳和核壳结构的洋葱碳。理想的具有中空结构的洋葱碳是由同心的球形石墨壳层嵌套而成, 如图1(a)所示, 其最内层是一个C60分子(由60个碳原子组成, 其直径约为0.7 nm)。由内往外, 中空结构的洋葱碳每一石墨壳层所含碳原子数为60n2 (n代表层数),

相邻层的间距约为0.34 nm。核壳结构洋葱碳的核可以是过渡金属粒子[2]、过渡金属氧化物[3-5]和纳米金刚石颗粒[6]等, 其壳由球形的石墨层嵌套而成。洋葱碳通常并不是严格的同心石墨壳层嵌套组成的球形结构, 大部分呈现出准球形结构或多面体结构, 如图1(b)与(c)所示。在一定条件下, OLC的外层石墨层会连接在一起, 形成具有多核结构的洋葱碳, 如图1(d)所示。

图1   (a)理想的中空OLC的结构模型[7], (b)准球形结构的OLC[8], (c)多面体结构的OLC [9]和(d)多核结构的OLC[10]

Fig. 1   (a) Structure model of ideal hollow OLC[7]with (b) quasi-spherical structure[8], (c) polyhedral structure[9] and (d) multi-core structure[10]

洋葱碳和纳米石墨微粒是两个不同的概念。纳米石墨微粒包括中空结构和核壳结构的洋葱碳, 也包括那些壳层排列并不规则, 最内层常常存在尺寸不等空隙的微粒。中空的, 壳层呈不规则形状的纳米石墨微粒, 其尺寸一般大于中空的洋葱碳, 结构和稳定性更趋近于石墨。洋葱碳大的比表面积[11-12]、高的电导率[12]、高的热稳定性以及封闭稳定的结构使其具有较大的应用潜力, 在催化[13]、摩擦[14-16]、锂离子二次电池[17-18]、太阳能电池[19]、电化学储氢[20-21]、超级电容器[22-24]和电磁屏蔽[25]等领域都显示出良好的应用前景。

1 洋葱碳的制备方法

洋葱碳的制备已有20多年历史, 制备方法较多, 可分为物理方法和化学方法两类。物理方法主要有电弧放电[26-31]、等离子体[32]、电子束辐射[33]等; 化学方法主要有化学气相沉积法[34-37]、纳米金刚石真空热处理[38-40]、热解法[41]等, 上述制备方法的优缺点, 如表1所示。

表1   OLC的主要制备方法优缺点比较

Table 1   Advantages and disadvantages of OLC's main preparation methods

Preparation methodsAdvantagesDisadvantages
Arc dischargeHigh crystallization,low defect density carbon onions prepared in bulk quantities using an arc in waterContaining a large amount of carbonaceous impurities such as amorphous carbon, CNTs, CNT-like structures, graphitic debris, and metallic impurities
PlasmaLow cost and prepared in bulk quantitiesContaining amorphous carbon and metallic impurities
Electron-beam radiationIn-situ observations achieved helpful to study the growth mechanism of OLCHigh cost and low yield
Chemical vapor depositionSimple, cheap, easy to implement and to realize mass productionPurification to remove amorphous carbon, CNTs, graphite, catalyst support, etc
Nanodiamond annealing in vacuumNarrow-sized distribution and produced in massive amountRequiring nanodiamond precursor and high-temperature vacuum oven
ThermolysisMassive amount of carbon onions produced at low cost by using simple deviceLarger size CNOs and/or purification requirement

新窗口打开

激光辐照法也是一种可以快速宏量制备洋葱碳的方法, 而且它使用的碳源种类丰富, 包括非晶碳化硅[42]、炭黑[43]、石墨[44]、丙酮[45]、乙烯[46]等。最近, Xiao等[47]发现, 用激光辐照纳米金刚石也可以制备出洋葱碳, 并且可以实现纳米金刚石-洋葱碳的可逆转换。纳米金刚石向洋葱碳的转变是由于激光诱导的高温造成的; 洋葱碳向纳米金刚石的转变是由激光诱导的高温以及高压两方面共同作用的结果。OLC的制备方法还有碳离子注入法[48]和球磨法[49]等。

但上述制备方法都涉及到以下几个问题: 高能消耗; 工艺复杂、可控性低; 伴有杂质相和产量低。近年来, 相继出了一些新的OLC制备方法。Han等[50]通过CuCl2·2H2O和CaC2在600℃反应生成了高纯度、粒度分布均匀的(大约30 nm)OLC。 Ghosh等[51]通过先碳化木材废料, 再后经浓硝酸处理, 制备出水溶性的OLC。Choucair等[52]通过燃烧萘制备出克量级的OLC, 制备过程不需催化剂, 并且产物无任何杂质。

2 洋葱碳的应用

2.1 OLC在锂离子二次电池负极材料方面的应用

石墨类碳材料作为锂离子电池的负极材料, 目前已实现商业化。但是石墨的理论比容量低(372 mAh/g), 限制了锂离子电池比能量的进一步提高。由于金属氧化物具有高的理论比容量(如表2), 一些环境友好、制造成本低的金属氧化物已引起研究者的兴趣。在充放电循环过程中负极材料由于体积变化大, 电极活性物质会发生破裂和粉碎, 导致电池容量衰减, 循环性能变差。另外, 金属氧化物负极由于电导率低, 还存在高倍率下充放电容量低等缺点, 限制了其广泛应用。通常采用两种方法解决上述问题[53]: 一种方法是合成纳米结构的金属氧化物, 包括不同的形貌, 如纳米粒子、纳米片、纳米线、纳米棒、纳米管和空心纳米结构。纳米材料可以提供更短的电子和锂离子传输路径, 从而提高了电导率和充放电速率。另与块体材料相比, 纳米材料能够更好的调节由于嵌锂/脱锂造成的机械应变, 从而提高循环稳定性, 延长循环寿命; 另一种方法就是制备由金属氧化物/碳纳米材料构成的复合材料电极。该复合材料电极能够提供足够的空间调节电极体积在充放电过程中的变化, 并保持电极的机械完整性, 提高循环的稳定性。Han等[50]发现CNOs的比容量(60个循环后, 其可逆容量为391 mAh/g)高于传统石墨材料的比容量, 并把原因归结为三点: 第一, 纳米级的洋葱碳能够提供大的电极-电解液接触面积, 缩短电子和锂离子的传输路径; 第二, 洋葱碳的多层结构提供了更多的锂存储位; 第三、洋葱碳周围的非晶碳也对提高比容量有贡献, 因为无序碳比石墨具有更高的比容量。具有核壳结构的洋葱碳(核为金属氧化物)是一种良好的负极材料, 主要是因为金属氧化物被包覆后提高了电极材料的电导率, 并且洋葱碳的石墨壳层能够缓冲充放电过程中负极体积的变化。表3为几种金属氧化物在有无石墨层包覆情况下的性能比较, 可以看出, 包覆后的过渡金属氧化物电极的高倍率容量和循环性能大大提高。

表2   不同金属氧化物的理论比容量

Table 2   Theoretical capacities of various metal oxides

Metal oxidesTheoretical capacity/(mAh·g-1)Ref
SnO2782[54]
CuO674[4]
CdO1046[55]
Cr2O31058[56]
MoO2838[57]
NiO718[3]
MnO755[58]
MnO21233[59]
Mn2O31019[60]
Fe2O31007[60]
Fe3O4926[61]
CoO715[62]
Co3O4890[5]

新窗口打开

表3   金属氧化物负极材料性能比较

Table 3   Performance comparison of metal oxides used as anode materials

Anode
materials
OLC
encapsulation
Initial discharge ability of nanoparticles electrode at different ratesCycle performanceRef
NiONoNiO, 2C, 558.8 mAh/g0.5C, 1150 mAh/g (initial discharge) and
383.5 mAh/g (after 50 cycles)
[3]
YesNiO/C, 2C, 1105.6 mAh/g0.5C, 1689.4 mAh/g (initial discharge) and 1157.7 mAh/g (after 50 cycles)
CuONoCuO, 1.2C, 178.9 mAh/g100 mA/g , 270.2 mAh/g (after 50 cycles)[4]
YesCuO/C, 1.2C, 535.6 mAh/g100 mA/g, 628.7 mAh/g (after 50 cycles) with a high Coulombic efficiency of 98.6%
Co3O4NoCo3O4, 2C, 459 mAh/g1248.8 mAh/g (initial discharge) and
471.5 mAh/g (after 50 cycles)
[5]
YesCo3O4/C, 2C, 925 mAh/g0.5C, 1467.6 mAh/g (initial discharge) and 1026.9 mAh/g (after 50 cycles)
SnO2No/0.2 mA/cm2, 849 mAh/g (initial discharge) to 123 mAh/g (after 50 cycles)[63]
Yes/0.2 mA/cm2, 755 mAh/g(initial discharge) and 446 mAh/g (after 50 cycles)

新窗口打开

2.2 OLC在染料敏化太阳能电池方面的应用

染料敏化太阳能电池(dye-sensitized solar cell, 即DSSC)具有制作工艺简单、制作成本低、无污染、光电转换效率高等优点, 有望替代硅太阳能电池。自1991, Oregan制作了第一块染料敏化纳米晶太阳能电池以来, 20多年来广大研究者的研究热情从未间断。

DSSC中对电极有两个作用: 收集从光阳极传输过来的电子, 并将I3-还原成I-。DSSC对电极材料必须满足高的导电性、高的比表面积、高的电催化活性和高化学稳定性等要求, 因此最常用的对电极材料为铂和碳基材料。铂对电极的转化效率较高, 但其价格昂贵, 增加了制造成本。OLC作为碳基材料之一, 也是性能良好的对电极材料。图2为在同等测试条件下, 分别以铂和CNOs为对电极的相同结构DSSC的光电流-光电压曲线图, 可以看出CNOs对电极的性能与Pt对电极相当。二者的光电

转换效率接近, 并且以CNOs为对电极的DSSC的填充因子大于Pt对电极电池。

图2   用Pt和CNOs做对电极的DSSCs的光电流密度-光电压曲线[19]

Fig. 2   Photocurrent density-photovoltage of the fabricated DSSCs using Pt and CNOs counter electrodes[19]

2.3 OLC在电化学储氢方面的应用

OLC具有高的比表面积和电导率, 是碳质储氢材料的重要成员之一。碳质储氢材料的储氢容量与比表面积有关, 理论储氢容量可以通过公式mads≈Sspec×2.27×10-3wt%估算求得[64]。Zhang等[20]在850℃下, 以铁镍合金为催化剂, 用CVD方法制备OLC, 再经过1100℃高温退火, 制备了中空的OLC, 然后制作成电极, 在室温下进行电化学储氢性能测试, 发现OLC电极具有优异的电化学活性和放电容量。在500 mA/g的电流密度下, 首次充放电循环达到最大放电容量约590 mAh/g; 经过10次充放电循环, 放电容量保持在481.6 mAh/g以上(对应储氢容量为1.76wt%); 经过55次循环, 电极仍然保持稳定, 容量保持率仍超过80%。在高温退火过程中, 金属颗粒从具有核壳结构的OLC中游离出来, 导致OLC表面形成开口缺陷, 所以中空OLC具有较高放电容量。氢分子可以通过这些开口缺陷扩散到OLC的内部中空部分, 大大增加了吸附氢分子的表面积。Zhang等[21]还利用CVD方法制备了三种核壳结构的CNOs, 即Ni@CNOs、Fe0.64Ni0.36@CNOs和Fe3C@CNOs, 并在室温下进行了电化学储氢性能测试(如图3所示)。结果表明: Ni@CNOs的储氢容量最大(1.42wt%), 这主要是由于Ni@CNOs中存在大量的缺陷, 且Ni粒子具有高的电导率和电催化活性; Fe3C@CNOs的储氢容量最小(0.91wt%)), 这主要是由于Fe3C电导率低导致Fe3C@CNOs电化学性能较差。

图3   室温下, 充放电电流密度为500 mA/g时三种电极的放电容量随循环次数的变化[21]

Fig. 3   Discharge capcity of the three types of CNOs versus cycle number at a charge-discharge current density of 500 mA/g at room temperature[21]

2.4 OLC在超级电容器电极材料方面的应用

碳材料超级电容器电极的比电容低、能量密度低, 如何提高碳材料的比电容、能量密度, 是解决问题的关键。作为碳材料的一员, OLC电极比电容也较低, 约30~40 F/g。提高OLC比电容主要有两条途径。第一条途径是提高OLC的比表面积, 可以通过在制备过程中控制温度[65]或后期的化学活化作用实现。Gao等[66]通过KOH化学活化作用, 得到多孔OLC, 提高了比电容和能量密度。同等测试条件下, 未活化OLC电极的比电容、功率密度、能量密度分别为25.8 F/g、123 kW/kg、1.5 Wh/kg; 活化后多孔OLC电极的比电容、功率密度、能量密度分别为122 F/g、153 kW/kg、8.5 Wh/kg。性能提高主要是由于化学活化提高了OLC的比表面积, 但活化后的OLC在后期的冲洗、超声和过滤过程中, 会损失大量原材料。第二条途径是制备OLC基复合材料电极, 包括过OLC/过渡金属氧化物电极和OLC/导电聚合物电极等。Anjos等[67]测试了PQ/OLC复合材料电极性能, 发现其能量密度最高可以达到4.5 Wh/kg, 大约是OLC电极的9倍; 比电容最高可以达到264 F/g, 在恒电流密度1.3 A/g下, 经过10000次充放电循环, 比电容保持率仍较高。表3为不同方法活化的OLC电极和CNOs复合材料电极的比电容。

表3   CNOs电极和CNOs基复合材料电极的比电容

Table 3   Specific capacitances of various CNOs and CNOs-based composite electrode

Types of materialsSpecific capacitances/(F·g-1)Ref
CNOs30[67]
CNOs/KOH activation<122[66]
CNOs/H2SO4 activation20-40[68]
CNOs/RuO2·xH2O96-334[69]
CNOs/NiO218.2-290.6[70]
CNOs/Ni(OH)2727.4-1225.2[70]
CNOs/MnO2177.5[71]
CNOs/PDDA20-30[72]
CNOs/chit20-30[72]
CNOs/PANI<525[73]
CNOs/PQ267[67]
CNOs/NQ91[67]
CNOs/PY130[67]

新窗口打开

2.5 OLC在磨擦磨损领域的研究与应用

碳基润滑剂(石墨、石墨烯、碳纳米管、类金刚石等)表现出优异的耐磨擦磨损性能, OLC有望成为性能更加优异的固体润滑剂, 这是由于OLC约10 nm的准球形结构, 有可能在纳米尺寸范围内起“微轴承”作用; 碳原子排列完美, 表面没有悬挂键, OLC和偶件材料只可能存在弱的分子间键合; 稳定的封闭结构使其具有高的机械强度。

Hirata等[74]通过用钢球和硅片做球盘摩擦磨损试验, 测试了OLC的固体润滑性能, 研究表明: (1)室温下, OLC在空气和真空中都显示出较稳定的低摩擦系数(<0.1), 摩擦系数低于同等测试条件下石墨、C60/70和金刚石团簇的摩擦系数。(2)小尺寸的OLC比大尺寸的OLC具有更加优异的耐摩擦性能, 这主要是由于大尺寸的OLC最外层有更多的缺陷, 会与偶件材料发生键合, 从而造成较大的摩擦系数和较多的磨损量。

Bucholz等[75]通过原子分子动力学仿真研究了OLC的摩擦机理。结果表明, 摩擦性能主要由OLC纳米颗粒滚动和滑动所占的比例决定。滚动摩擦变为滑动摩擦时, 摩擦系数会有一个数量级的增长(由0.024增大到0.151), 而在摩擦过程中, OLC滚动和滑动的相对比例与界面键的形成有关。

2.6 OLC在催化方面的应用

阴极氧还原反应动力学缓慢严重制约了燃料电池性能的提高。纳米结构的原子掺杂碳材料能够提高电催化活性和降低成本, 有望取代传统的Pt或Pt基电极。常见的掺杂原子有N、S、P和B等。比表面积大, 且具有多孔结构的共掺杂碳材料在氧还原反应中具有高的活性。Han等[76]通过一步法合成了氮、硫共掺杂介孔洋葱碳(NS-MCV), 证实其在氧还原反应中具有较高的电催化活性, 和商用Pt/C催化剂相比, NS-MCV具有更好的稳定性和耐受性。

Lin等[8]研究发现氮掺杂的洋葱碳(N-OLC)在苯乙烯的环氧化反应中显示出良好的催化性能, 其催化性能优于未掺杂的洋葱碳和一些金属催化剂。N-OLC制备方法如图4所示, 纳米金刚石在氩气氛围中经1300℃退火4 h得到洋葱碳; 然后将OLC放入120℃的硝酸中, 持续搅拌2 h, 所得产物经过过滤、清洗和烘干, 得到氧掺杂的OLC(O-OLC); 最后, 在氨气氛中, O-OLC在不同温度下退火4h得到N-OLC。

图4   N-OLC制备示意图[24]

Fig. 4   Schematic illustration for fabrication N-OLC[24]

OLC除了在上述领域有着广泛应用外, 还可作为制备纳米栾晶金刚石和聚晶金刚石的前驱物。Huang等[77]以OLC为前驱物, 在高温高压下制备出纳米栾晶金刚石, 其硬度高达200 GPa, 超过了天然金刚石。Gong[78]和Yu[79]以洋葱碳为前驱物, 在高温高压下制备出了无添加剂的聚晶金刚石, 其硬度最高可达55.9 GPa。

3 结束语

经过多年的研究, 人们已经掌握了多种OLC的制备方法并对其生长机理有了一定的认识, 并且在应用方面有了一定尝试, 显示出其优异的性能, 但是仍然存在一些不足:

1) 目前比较成熟的OLC的制备方法都存在成本高、产量低和含有杂质等缺点。快速、简单、低成本和宏量制备OLC以及OLC的纯化仍然是以后的研究重点。

2) OLC的曲率半径、比表面积、晶化程度与制备方法、制备条件密切相关, 而曲率半径、比表面积、晶化程度等因素又影响着OLC的理化性能, 所以在微观上实现OLC的可控生长, 精确控制OLC的石墨壳层数、比表面积和晶化程度, 具有重要意义。

3) OLC的应用研究才刚刚起步, 仍需要开展大量的基础研究。优化过渡金属氧化物/OLC复合材料电极的制备参数, 进一步提高锂离子二次电池的比容量、高倍率性能以及循环稳定性能; 研究OLC比表面积、多孔结构、晶化程度对OLC对电极性能的影响, 进一步提高OLC对电极的性能; 研究OLC比表面积、多孔结构对储氢容量的影响, 通过在OLC的表面引入官能团或者掺杂提高氢气和OLC的表面结合能, 从而提高储氢容量; 优化OLC基复合材料电极的性能, 提高超级电容器的比电容和能量密度; 研究不同的元素掺杂以及共掺杂对OLC催化性能的影响等。

OLC的结构、表面功能化以及掺杂对其性能有重要影响, 理清它们之间的关系, 优化OLC基器件的性能, 可以推进OLC在能源等诸多领域的应用。

The authors have declared that no competing interests exist.

作者声明没有竞争性利益关系.


参考文献

[1] UGARTE D.

Curling and closure of graphitic networks under electron-beam irradiation.

Nature, 1992, 359: 707-709.

[本文引用: 1]     

[2] ABDULLAEVA Z, OMURZAK E, IWAMOTO C, et al.

Onion- like carbon-encapsulated Co, Ni, and Fe magnetic nanoparticles with low cytotoxicity synthesized by a pulsed plasma in a liquid.

Carbon, 2012, 50: 1776-1785.

[本文引用: 1]     

[3] LIU X G, OR S W, JIN C G, et al.

NiO/C nanocapsules with onion- like carbon shell as anode material for lithium ion batteries.

Carbon, 2013, 60: 215-220.

[本文引用: 1]     

[4] LIU X G, BI N N, FENG C, et al.

Onion-like carbon coated CuO nanocapsules: a highly reversible anode material for lithium ion batteries.

Journal of Alloys and Compounds, 2014, 587: 1-5.

[5] LIU X G, OR S W, JIN C G, et al.

Co3O4/C nanocapsules with onion- like carbon shells as anode material for lithium ion batteries.

Electrochimica Acta, 2013, 100: 140-146.

[本文引用: 1]     

[6] QIAO Z J, LI J J, ZHAO N Q, et al.

Graphitization and microstructure transformation of nanodiamond to onion-like carbon.

Scripta Materialia, 2006, 54: 225-229.

[本文引用: 1]     

[7] XU B S.

Prospects and research progress in nano onion-like fullerenes.

New carbon materials, 2008, 23(4): 289-301.

[本文引用: 2]     

[8] LIN Y M, PAN X L, QI W, et al.

Nitrogen-doped onion-like carbon: a novel and efficient metal-free catalyst for epoxidation reaction.

J. Mater. Chem. A, 2014, 2: 12475-12483.

[本文引用: 3]     

[9] BOGDANOV K, FEDOROV A, OSIPOV V, et al.

Annealing- induced structural changes of carbon onions: high-resolution transmission electron microscopy and Raman studies.

Carbon, 2014, 73: 78-86.

[本文引用: 2]     

[10] XU B S, TANAKA S I.

Multiple-nuclei Onion Like Fullerenes Cultivated by Electron Beam Irradiation.

Proc. Int. Conf. ICSE,Cambridge, 1997: 355-360.

[本文引用: 2]     

[11] WANG Q, SUN X L, HE D Y, et al.

Preparation and study of carbon nano-onion for lithium storage.

Materials Chemistry and Physics, 2013, 139: 333-337.

[本文引用: 1]     

[12] WANG Y, HAN Z J, YU S F, et al.

Core-leaf onion-like carbon/ MnO2 hybrid nano-urchins for rechargeable lithium-ion batteries.

Carbon, 2013, 64: 230-236.

[本文引用: 2]     

[13] WU G, NELSON M, MA S G, et al.

Synthesis of nitrogen-doped onion-like carbon and its use in carbon-based CoFe binary non-precious-metal catalysts for oxygen-reduction.

Carbon, 2011, 49: 3972-3982.

[本文引用: 1]     

[14] MATSUMOTO N, JOLY-POTTUZ L, KINOSHITA H, et al.

Application of onion-like carbon to micro and nanotribology.

Diamond & Related Materials, 2007, 16: 1227-1230.

[本文引用: 1]     

[15] JOLY-POTTUZ L, MATSUMOTO N, KINOSHITA H, et al.

Diamond-derived carbon onions as lubricant additives.

Tribology International, 2008, 41: 69-78.

[16] MATSUMOTO N, MISTRY K K, KIM J H, et al.

Friction reducing properties of onion-like carbon based lubricant under high contact pressure.

Tribology, 2012, 6(3): 116-120.

[本文引用: 1]     

[17] WANG Y, XING G Z, HAN Z J, et al.

Pre-lithiation of onion-like carbon/MoS2 nano-urchin anodes for high-performance rechargeable lithium ion batteries.

Nanoscale, 2014, 6: 8884-8890.

[本文引用: 1]     

[18] WANG Y, YAN F, LIU S W, et al.

Onion-like carbon matrix supported Co3O4 nanocomposites: a highly reversible anode material for lithium ion batteries with excellent cycling stability.

J. Mater. Chem. A, 2013, 1(17): 5212-5216.

[本文引用: 1]     

[19] BU I Y Y.

Synthesis of graphitic carbon nano-onions for dye sensitized solar cells.

Solar Energy, 2014, 105: 236-242.

[本文引用: 3]     

[20] ZHANG C G, LI J J, LIU E Z, et al.

Synthesis of hollow carbon nano-onions and their use for electrochemical hydrogen storage.

Carbon, 2012, 50: 3513-3521.

[本文引用: 2]     

[21] ZHANG C G, LI J J, SHI C S, et al.

Effect of Ni, Fe and Fe-Ni alloy catalysts on the synthesis of metal contained carbon nano-onions and studies of their electrochemical hydrogen storage properties.

Journal of Energy Chemistry, 2014, 23: 324-330.

[本文引用: 4]     

[22] MCDONOUGH J K, FROLOV A I, PRESSER V, et al.

Influence of the structure of carbon onions on their electrochemical performance in supercapacitor electrodes.

Carbon, 2012, 50: 3298-3309.

[本文引用: 1]     

[23] PECH D, BRUNET M, DUROU H, et al.

Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon.

Nature Nanotechnology, 2010, 5: 651-654.

[24] BUSHUEVA E G, GALKIN P S, BULUSHEVA L G, et al.

Double layer supercapacitor properties of onion-like carbon materials.

Phys. Stat. Sol.(b), 2008, 245(10): 2296-2299.

[本文引用: 3]     

[25] SHENDEROVA O, GRISHKO V, CUNNINGHAM G, et al.

Onion- like carbon for terahertz electromagnetic shielding.

Diamond & Related Materials, 2008, 17: 462-466.

[本文引用: 1]     

[26] SANO N, WANG H, ALEXANDROU I, et al.

Properties of carbon onions produced by an arc discharge in water.

Journal of Applied Physics, 2002, 92(5): 2783-2788.

[本文引用: 1]     

[27] BORGOHAIN R, YANG J, SELEGUE J P, et al.

Controlled synthesis, efficient purification, and electrochemical characterization of arc-discharge carbon nano-onions.

Carbon, 2014, 66: 272-284.

[28] XING G, JIA X L, SHI Z Q.

The production of carbon nano-materials by arc discharge under water or liquid nitrogen .

New Carbon Materials, 2007, 22(4): 337-341.

[29] SANO N, WANG H, CHHOWALLA M, et al.

Nanotechnology: synthesis of carbon 'onions' in water.

Nature, 2001, 414: 506-507.

[30] ZHOU J F, SHEN Z Y, HOU S M, et al.

Adsorption and manipulation of carbon onions on highly oriented pyrolytic graphite studied with atomic force microscopy.

Applied Surface Science, 2007, 253: 3237-3241.

[31] LIU W, MIAO Y, MENG Q S.

Synthesis of Onion-Like Fullerenes by Arc Discharge in Non-Toxic Organic Liquid.

Integrated Ferroelectrics, 2012, 138: 77-82.

[本文引用: 1]     

[32] CHEN X H, DENG F M, WANG J X, et al.

New method of carbon onion growth by radio-frequency plasma-enhanced chemical vapor deposition.

Chemical Physics Letters, 2001, 336: 201-204.

[本文引用: 1]     

[33] SZERENCSI M, RADNOCZI G.

The mechanism of growth and decay of carbon nano-onions formed by ordering of amorphous particles.

Vacuum, 2010, 84: 197-201.

[本文引用: 1]     

[34] HE C N, TIAN F, LIU S J, et al.

Characterization and magnetic property of carbon coated metal nanoparticles and hollow carbon onions fabricated by CVD of methane.

Materials Letters, 2008, 62: 3697-3699.

[本文引用: 1]     

[35] HE C N, ZHAO N Q, DU X W, et al.

Low-temperature synthesis of carbon onions by chemical vapor deposition using a nickel catalyst supported on aluminum.

Scripta Materialia, 2006, 54: 689-693.

[36] WANG X M, XU B S, LIU X G, et al.

Synthesis of Fe-included onion-like fullerenes by chemical vapor deposition.

Diamond & Related Materials, 2006, 15: 147-150.

[37] ZHANG C G, LI J J, SHI C S, et al.

The efficient synthesis of carbon nano-onions using chemical vapor deposition on an unsupported Ni-Fe alloy catalyst.

Carbon, 2011, 49: 1151-1158.

[本文引用: 1]     

[38] MYKHAYLYK O O, SOLONIN Y M, BATCHELDER D N, et al.

Transformation of nanodiamond into carbon onions: a comparative study by high-resolution transmission electron microscopy, electron energy-lossspectroscopy, X-ray diffraction, small-angle X-ray scattering,ultraviolet Raman spectroscopy.

Journal of applied Physics, 2005, 97: 074302-1-6.

[本文引用: 1]     

[39] BUTENKO Y V, KRISHNAMURTHY S, CHAKRABORTY A K, et al.

Photoemission study of onionlike carbons produced by annealing nanodiamonds.

Physical Review B, 2005, 71: 075420-1-10.

[40] CEBIK J, MCDONOUGH J K, PEERALLY F, et al.

Raman spectroscopy study of the nanodiamond-to-carbon onion transformation.

Nanotechnology, 2013, 24: 205703-1-10.

[本文引用: 1]     

[41] BYSTRZEJEWSKI M, RUMMELI M H, GEMMING T, et al.

Catalyst-free synthesis of onion-like carbon nanoparticles.

New Carbon Materials, 2010, 25(1): 1-8.

[本文引用: 1]     

[42] GORELIK T, URBAN S, FALK F, et al.

Carbon onions produced by laser irradiation of amorphous silicon carbide.

Chemical Physics Letters, 2003, 373: 642-645.

[本文引用: 1]     

[43] HU S L, BAI P K, TIAN F, et al.

Hydrophilic carbon onions synthesized by millisecond pulsed laser irradiation.

Carbon, 2009, 47: 876-883.

[本文引用: 1]     

[44] DOROBANTU D, BOTA P M, BOERASU I, et al.

Pulse laser ablation system for carbon nano-onions fabrication.

Surface Engineering and Applied Electrochemistry, 2014, 50(5): 390-394.

[本文引用: 1]     

[45] ZHANG H M, LIANG C H, LIU J, et al.

The formation of onion-like carbon-encapsulated cobalt carbide core/shell nanoparticles by the laser ablation of metallic cobalt in acetone.

Carbon, 2013, 55: 108-115.

[本文引用: 1]     

[46] GAO Y, ZHOU Y S, PARK J B, et al.

Resonant excitation of precursor molecules in improving the particle crystallinity, growth> rate and optical limiting performance of carbon nano- onions.

Nanotechnology, 2011, 22(16): 165604-1-6.

[本文引用: 1]     

[47] XIAO J, OUYANG G, LIU P, et al.

Reversible nanodiamond- carbon onion phase transformations.

Nano letters, 2014, 14: 3645-3652.

[本文引用: 1]     

[48] CABIOC’H T, JAOUEN M, THUNE E, et al.

Carbon onions formation by high-dose carbon ion implantation into copper and silver

. Surface and Coatings Technology, 2000, 128-129: 43-50.

[本文引用: 1]     

[49] HUANG J Y,

YASUDA H AND MORI H. Highly curved carbon nanostructures produced by ball-milling.

Chemical Physics Letters, 1999, 303: 130-134.

[本文引用: 1]     

[50] HAN F D, YAO B AND BAI Y J.

Preparation of carbon nano-onions and their application as anode materials for rechargeable lithium-ion batteries.

J. Phys. Chem. C, 2011, 115: 8923-8927.

[本文引用: 2]     

[51] GHOSH M, SONKAR S K, SAXENA M, et al.

Carbon nano-onions for imaging the life cycle of drosophila melanogaster.

Small, 2011, 7(22): 3170-3177.

[本文引用: 1]     

[52] CHOUCAIR M, STRIDE J A.

The gram-scale synthesis of carbon onions.

Carbon, 2012, 50: 1109-1115.

[本文引用: 1]     

[53] HE C N, WU S, ZHAO N Q, et al.

Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material.

ACS Nano, 2013, 7(5): 4459-4469.

[本文引用: 1]     

[54] HAN Q Y, ZAI J T, XIAO Y L, et al.

Direct growth of SnO2 nanorods on graphene as high capacity anode materials for lithium ion batteries.

RSC Adv., 2013, 3: 20573-20578.

[55] FENG J K, XIONG S L, QIAN Y T, et al.

Synthesis of nanosized cadmium oxide (CdO) as a novel high capacity anode material for Lithium-ion batteries: influence of carbon nanotubes decoration and binder choice.

Electrochimica Acta, 2014, 129: 107-112.

[56] GUO B K, CHI M F, SUN X G, et al.

Mesoporous carbon-Cr2O3 composite as an anode material for lithium ion batteries.

Journal of Power Sources, 2012, 205: 495-499.

[57] CHEN A, LI C X, TANG R, et al.

MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery.

Phys. Chem. Chem. Phys., 2013, 15: 13601-13610.

[58] LIU B, HU X L, XU H H, et al.

Encapsulation of MnO nanocrystals in electrospun carbon nanofibers as high-performance anode materials for lithium-ion batteries.

Scientific Reports, 2014, 4: 4229.

[59] ZANG J, CHEN J J, ZHANG C L, et al.

The synthesis of a core-shell MnO2/3D-ordered hollow carbon sphere composite and its superior electrochemical capability for lithium ion batteries.

J. Mater. Chem. A, 2014, 2(18): 6343-6347.

[60] LEPPLE M, ADAM R, CUPID D M, et al.

Thermodynamic investigations of copper oxides used as conversion type electrodes in lithium ion batteries.

J. Mater. Sci., 2013, 48: 5818-5826.

[61] WANG J, ZHAO H L, ZENG Z P, et al.

Nano-sized Fe3O4 /carbon as anode material for lithium ion battery.

Materials Chemistry and Physics, 2014, 148: 699-704.

[62] QIN D, YAN P, LI G Z, et al.

Synthesis of hierarchical CoO nano/microstructures as anode materials for lithium-ion batteries.

Journal of Nanomaterials, 2014, 2014: 489862-1-5.

[63] ZHANG H J, SONG H H, ZHOU J S, et al.

Preparation and electrochemical properties of SnO2/onion-like hollow carbon nanoparticle composites as anode materials for lithium-ion batteries.

Acta Phys.-Chim. Sin., 2010, 26(5): 1259-1263.

[64] STROBEL R, GARCHE J, MOSELEY P T, et al.

Hydrogen storage by carbon materials.

Journal of Power Sources, 2006, 159: 781-801.

[本文引用: 1]     

[65] PORTET C, YUSHIN G, GOGOTSI Y.

Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors.

Carbon, 2007, 45: 2511-2518.

[本文引用: 1]     

[66] GAO Y, ZHOU Y S, QIAN M, et al.

Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes.

Carbon, 2013, 51: 52-58.

[本文引用: 1]     

[67] ANJOS D M, MCDONOUGH J K, PERRE E, et al.

Pseudocapacitance and performance stability of quinone-coated carbon onions.

Nano energy, 2013, 2: 702-712.

[本文引用: 1]     

[68] PLONSKA-BRZEZINSKA M E, ECHEGOYEN L.

Carbon nano-onions for supercapacitor electrodes: recent developments and applications.

Journal of Materials Chemistry A, 2013, 1: 13703-13714.

[69] BORGOHAIN R, LI J C, SELEGUE J P, et al.

Electrochemical study of functionalized carbon nano-onions for high-performance supercapacitor electrodes.

J. Phys. Chem. C, 2012, 116: 15068-15075.

[70] PLONSKA-BRZEZINSKA M E, BRUS D M, MOLINA- ONTORIA A, et al.

Synthesis of carbon nano-onion and nickel hydroxide/oxide composites as supercapacitor electrodes.

RSC Adv., 2013, 3: 25891-25901.

[71] WANG Y, YU S F, SUN C Y, et al.

MnO2/onion-like carbon nanocomposites for pseudocapacitors.

J. Mater. Chem., 2012, 22: 17584-17588.

[72] BRECZKO J, WINKLER K,

PLONSKA-BRZEZINSKA M E, et al. Electrochemical properties of composites containing small carbon nano-onions and solid polyelectrolytes.

J. Mater. Chem., 2010, 20: 7761-7768.

[73] PLONSKA-BRZEZINSKA D M E, BRECZKO J, PALYS D B, et al.

The electrochemical properties of nanocomposite films obtained by chemical in situ polymerization of aniline and carbon nanostructures.

ChemPhysChem, 2013, 14(1): 116-124.

[74] HIRATA A, IGARASHI M, KAITO T.

Study on solid lubricant properties of carbon onions produced by heat treatment of diamond clusters or particles.

Tribology International, 2004, 37: 899-905.

[本文引用: 1]     

[75] BUCHOLZ E W, PHILLPOT S R, SINNOTT S B.

Molecular dynamics investigation of the lubrication mechanism of carbon nano-onions.

Computational Materials Science, 2012, 54: 91-96.

[本文引用: 1]     

[76] HAN C, BO X J, ZHANG Y F, et al.

One-pot synthesis of nitrogen and sulfur co-doped onion-like mesoporous carbon vesicle as an efficient metal-free catalyst for oxygen reduction reaction in alkaline solution.

Journal of Power Sources, 2014, 272: 267-276.

[本文引用: 1]     

[77] HUANG Q, YU D L, XU B, et al.

Nanotwinned diamond with unprecedented hardness and stability.

Nature, 2014, 510: 250-253.

[本文引用: 1]     

[78] 龚文.

碳纳米葱无添加剂高温高压烧结聚晶金刚石的研究

. 秦皇岛: 燕山大学硕士学位论文, 2012.

[本文引用: 1]     

[79] 余强华.

微米金刚石对碳纳米葱烧结PCD组织及性能的影响

. 秦皇岛: 燕山大学硕士学位论文, 2013.

[本文引用: 1]     

版权所有 © 2019 《无机材料学报》编辑部
通信地址:上海市嘉定区和硕路585号 邮政编码:201899 电话: 021-69906267
E-mail:jim@mail.sic.ac.cn
沪ICP备05005480号-12  沪公网安备31011402010211号
本系统由北京玛格泰克科技发展有限公司设计开发

/