研究论文

Mn掺杂(K 0.5 Na 0.5 ) 0.96 Sr 0.02 NbO3无铅压电陶瓷的研究

  • 刘涛 ,
  • 丁爱丽 ,
  • 何夕云 ,
  • 郑鑫森 ,
  • 仇萍荪 ,
  • 程文秀
展开
  • 中国科学院上海硅酸盐研究所高性能陶瓷和超微结构国家重点实验室, 上海 200050

收稿日期: 2006-07-05

  修回日期: 2006-09-26

  网络出版日期: 2007-05-20

Mn-modified (K 0.5 Na 0.5 ) 0.96 Sr 0.02 NbO3 Lead-free Piezoelectric Ceramics

  • LIU Tao ,
  • DING Ai-Li ,
  • HE Xi-Yun ,
  • ZHENG Xin-Sen ,
  • QIU Ping-Sun ,
  • CHENG Wen-Xiu
Expand
  • State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

Received date: 2006-07-05

  Revised date: 2006-09-26

  Online published: 2007-05-20

摘要

采用常压烧结方法制备了Mn掺杂的(K 0.5 Na 0.5) 0.96 Sr 0.02 Nb 1-x Mn x O 3无铅压电陶瓷. 研究了Mn含量对该体系材料的相组成、微观结构、介电、压电和热稳定性能的影响. XRD表明随着Mn含量的增加, 体系由正交相过渡到赝四方相; 而且, 富Na的第二相消失, 得到纯净的钙钛矿相结构. 在Mn含量为x=0.03和0.04时, 观察到了两个温度(200和390℃)处的介电反常, 这和晶格畸变引起的复晶胞结构有关. Mn含量为x=0.02时, 得到综合性能优良的压电超声换能器用材料: 介电常数εT330=479, 压电常数d33=121pC/N, 机电耦合系数 Kp=41%, 机械品质因子Qm=298, 介电损耗tanδ=1.6%, 居里温度Tc=391℃, 谐振频率fr和机电耦合系数Kp随温度的变化率αfr(80℃)和αKp (80℃)分别为-1.85%和1.19%.

本文引用格式

刘涛 , 丁爱丽 , 何夕云 , 郑鑫森 , 仇萍荪 , 程文秀 . Mn掺杂(K 0.5 Na 0.5 ) 0.96 Sr 0.02 NbO3无铅压电陶瓷的研究[J]. 无机材料学报, 2007 , 22(3) : 469 -473 . DOI: 10.3724/SP.J.1077.2007.00469

Abstract

Dense lead free ceramics of (K 0.5 Na 0.5 ) 0.96 Sr 0.02 Nb 1-x Mn x O 3 (x=0,0.01,0.02,0.03,0.04) were successfully prepared by a conventional mixed oxide method. The X-ray diffraction patterns revealed pure peroveskite structure after Mn doping as compared to the original composition. This was attributed to the inhibition of K+ volatility during sintering process. Dielectric anomaly was observed and explained by multiple-cell structure resulting from Mn-induced lattice distortion. Low loss tangent and relatively high planar electromechanical coupling factor were obtained at x=0.02. The main parameters for the composition of x=0.02 are: εT330=479, d33=121pC/N Kp=41%, Qm=298, tanδ=1.6%, Tc=391℃. The rates of resonant frequency variation, αfr, and planar coupling factor variation, αKp, with temperature are --1.85% and 1.19% at 80℃, respectively. This material may be suitable for applications in ultrasonic transducers.

参考文献

[1] Shirane G, Newnham R, Pepinsky R. Phys. Rev., 1954, 96 (3): 581--588.
[2] Tennery V G. J. Am. Ceram. Soc., 1959, 48 (10): 537--539.
[3] Egerton L, Dillon D M. J. Am. Ceram. Soc., 1959, 42 (9): 438--442.
[4] Tennnery V J, Hang K W. J. Appl. Phys., 1968, 39 (10): 4749--4753.
[5] Kosec M, Kolar D. Mater. Res. Bull., 1975, 10 (5): 335--340.
[6] Jaeger R.E, Egerton L. J. Am. Ceram. Soc., 1962, 45 (5): 209--213.
[7] Haertling G H. J. Am Ceram. Soc., 1967, 50 (6): 329--330.
[8] Ahn Z S, Schulze W A. J. Am. Ceram. Soc., 1987, 70 (1): C-18-21.
[9] Guo Y P, Kakimoto K, Ohsato H. Solid State Commu., 2004, 129: 279--284.
[10] Matsubara M, Yamaguchi T, Sakamoto W, et al. J. Am. Ceram. Soc., 2005, 88 (5): 1190--1996.
[11] 侯育冬, 杨祖培, 高峰, 等(Hou Yu-Dong, et al). 无机材料学报(Journal of Inorganic Materials) 2003, 18 (3): 590--594.
[12] 贾菲(B Jaffe), 等. 著, 林生和 译. 压电陶瓷, 第一版. 北京: 科学出版社, 1979. 246--247.
[13] Gentner P O, Gerthsen P, Schmidt N A, et al. J. Appl. Phys., 1978, 49 (8): 4485--4489.
[14] Tan Q, Xu Z and Viehland D. Phil. Mag. B., 2000, 80 (8): 1585--1597.
[15] 钟维烈. 铁电体物理学, 第一版. 北京: 科学出版社, 1998. 351--352.
文章导航

/