研究论文

非晶金刚石薄膜对温度的敏感性研究

  • 朱嘉琦 ,
  • 孟松鹤 ,
  • 陈旺寿 ,
  • 韩杰才
展开
  • 哈尔滨工业大学复合材料与结构研究所 哈尔滨 150080

收稿日期: 2006-06-25

  修回日期: 2006-07-19

  网络出版日期: 2007-05-20

Temperature-dependent Microstructural Properties of Amorphous Diamond Films

  • ZHU Jia-Qi ,
  • MENG Song-He ,
  • CHEN Wang-Shou ,
  • HAN Jie-Cai
Expand
  • Center for Composite Materials, Harbin Institute of Technology, Harbin 150080, China

Received date: 2006-06-25

  Revised date: 2006-07-19

  Online published: 2007-05-20

摘要

采用过滤阴极真空电弧技术制备非晶金刚石薄膜, 在-190~600℃范围研究非晶金刚石薄膜的温度敏感性. 利用液氮泵在Linkam试验台上冷却样品并实时采样, 通过炉中退火实现样品加热. 分别测试可见光拉曼光谱和纳米压痕, 研究薄膜的微结构和机械性能的变化. 实验表明: 过滤阴极真空电弧制备的非晶金刚石薄膜具有较好的热稳定性. 在空气中退火到400℃, 其硬度和弹性模量基本保持不变, 其结构可以一直稳定到500℃, 但是到600℃, 薄膜因为氧化作用而快速消耗. 非晶金刚石薄膜的可见光拉曼光谱显示随着温度的升高, 谱峰峰位向高频偏移. 在低温冷却过程中, 薄膜对温度变化不敏感, 其结构保持不变.

本文引用格式

朱嘉琦 , 孟松鹤 , 陈旺寿 , 韩杰才 . 非晶金刚石薄膜对温度的敏感性研究[J]. 无机材料学报, 2007 , 22(3) : 565 -569 . DOI: 10.3724/SP.J.1077.2007.00565

Abstract

The temperature sensibility of amorphous diamond (a-D) films deposited with the filtered cathodic vacuum arc technology was investigated in the range of -190-600℃. The samples cooled by liquid nitrogen pump were $in~situ$ measured on a Linkam stage and the samples for thermal stability were heated in a furnace. The microstructure and mechanical properties were respectively examined by visible Raman spectroscopy and a nanoindenter. The results show that a-D films have better thermal stability in air, they can hold their hardness up to 400℃ and hold their structure up to 500℃. However, the complete material loss takes place at about 600℃. Raman measurements show an apparent shift of the G-peak frequency to higher values with increasing annealing temperatures. The films are not sensitive to lower temperatures. The microstucture of the films remains stable as temperatures are decreased to -190℃.

参考文献

[1] McKenzie D R. Rep. Prog. Phys., 1996, 59: 1611--1664.
[2] Zhu J Q, Han J C, Han X, et al. Opt. Mater., 2006, 28 (5): 473--479.
[3] Yao Z Q, Yang P, Sun H, et al. J. Inorg. Mater., 2005, 20 (3): 727--734.
[4] Kalish R, Lifshitz Y, Nugent K, et al. Appl. Phys. Lett., 1999, 74 (20): 2936--2938.
[5] Anders S, Ager III J W, Pharr G M, et al. Thin Solid Films, 1997, 308-309: 186--190.
[6] Veerasamy V S, Amaratunga G A J, Milne W I, et al. J. Non-Cryst. Solids, 1993, 2 (12): 1111--1114.
[7] Tarrant R N, Montross C S, McKenzie D R. Surf. Coat. Technol., 2001, 136: 188--191.
[8] Ferrari A C, Robertson J. Phys. Rev. B, 2000, 61: 14095.
[9] Tay B K, Shi X, Liu E J, et al. Diamond Relat. Mater., 1999, 8: 1328--1332.
[10] Friedmann T A, McCarty K F, Barbour J C, et al. Appl. Phys. Lett., 1996, 68: 1643--1645.
[11] Bhargava S, Bist H D, Narlikar A V, et al. J. Appl. Phys., 1996, 79: 1917--1925.
[12] Wei Q, Narayan J. Int. Mater. Rev., 2000, 45: 133--164.
[13] Schwan J, Ulrich S, Batori V, et al. J. Appl. Phys., 1996, 80: 440--447.
[14] Yoshikawa M, Katagiri G, Ishida H, et al. J. Appl. Phys., 1988, 64: 6464--6468.
[15] Lifshitz Y, Kasi S R, Rabalais, et al. Phys. Rev. B, 1990, 41: 10468--10480.
[16] Robertson J. Diamond Relat. Mater., 1994, 3: 361--368.
[17] Britton D T, Harting H M, Hempel M, et al. Appl. Surf. Sci., 1999, 149: 130--134.
文章导航

/