研究论文

阳极氧化法制备TiO2纳米管阵列及其光电性能研究

  • 李贺 ,
  • 姚素薇 ,
  • 张卫国 ,
  • 王宏智 ,
  • 贲宇恒
展开
  • 天津大学化工学院杉山表面技术研究室, 天津 300072

收稿日期: 2006-04-19

  修回日期: 2006-07-03

  网络出版日期: 2007-03-20

TiO2 Nanotube Arrays Electrode Prepared by Anodic Oxidation and Its Photoelectrochemical Properties

  • LI He ,
  • YAO Su-Wei ,
  • ZHANG Wei-Guo ,
  • WANG Hong-Zhi ,
  • BEN Yu-Heng
Expand
  • SUGIYAMA Laboratory of Surface Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

Received date: 2006-04-19

  Revised date: 2006-07-03

  Online published: 2007-03-20

摘要

采用阳极氧化法在钛片上制备了TiO2纳米管阵列光电极, 利用扫描电子显微镜(SEM)和X射线衍射仪(XRD) 对TiO2纳米管的形貌和结构进行了表征, 详细考察了氧化工艺参数对纳米管阵列形貌的影响, 并通过稳态光电响应技术对TiO2纳米管电极的光电化学性能进行了研究. 结果表明, 在1wt HF电解液中, 控制氧化电压为20V, 反应30min后, 在Ti表面获得了垂直导向的TiO2纳米管阵列, 孔径约为90nm, 管壁厚度约为10nm. 经600℃退火处理后, TiO2纳米管阵列为锐钛矿型与金 红石型的混晶结构, 此时电极的光电性能最佳, 与TiO2纳米多孔膜电极相比, 光电性能大幅提高.

本文引用格式

李贺 , 姚素薇 , 张卫国 , 王宏智 , 贲宇恒 . 阳极氧化法制备TiO2纳米管阵列及其光电性能研究[J]. 无机材料学报, 2007 , 22(2) : 349 -353 . DOI: 10.3724/SP.J.1077.2007.00349

Abstract

TiO2 nanotube arrays photoelectrodes were fabricated by anodic oxidation on a pure titanium sheet. The morphology and structure of the nanotube arrays were characterized by SEM and XRD. Oxidation parameters for preparation were investigated. The photoelectrochemical properties of the TiO2 nanotube arrays electrodes were evaluated by steady-state photocurrent response. The results show that the vertical oriented TiO2 nanotube arrays can be obtained at 20V for 30min in 1wt% HF solution. And the aperture size of nanotubes is about 90nm and the thickness of tube wall is about 10nm. The structure of nanotube arrays is a mixture of anatase and rutile through annealed at 600℃. The results of photoelectric testing show that photoelectrochemical properties of TiO2 nanotube arrays electrode annealed at 600℃ are optimum. Compared with TiO2 nanoporous films, the properties of the TiO2 nanotube arrays are enhanced remarkably.

参考文献

[1] O’Regan B, Gratzel M. Nature, 1991, 353: 737--739.
[2] Dvoranova D, Brezova V, Mazur M, et al. Appl. Catal. B, 2002, 37 (2): 91--105.
[3] Sasaki T, Koshizaki N, Yon J W, et al. J. Photo. Photobio. A, 2001, 145 (1/2): 11--16.
[4] 何文, 张旭东, 李鹏, 等(HE Wen, et al). 无机材料学报 (Journal of Inorganic Materials), 2005, 20 (2): 508--512.
[5] Yin S, Maeda D, Ishitsuka M, et a1. Solid State Ionics, 2002, 151 (1/4): 377--383.
[6] Dhanalakshmi K B, Latha S, Anandan S, et al. Int. J. Hydrgen Energ., 2001, 26 (7): 669--674.
[7] Michailouski A, Almawlawi D, Cheng G S, et al. Chem. Phys. Lett., 2001, 349 (1/2): 1--5.
[8] 马新起, 郭新勇, 金振声, (MA Xini, et al). 无机材料学报 (Journal of Inorganic Materials), 2003, 18 (5): 1131--1134.
[9] Hoyer P. Advanced Materials, 1996, 8 (10): 857--859.
[10] Zhu Y, Li H, Koltypin Y, et al. Chem. Commun., 2001, 24: 261--267.
[11] Pu L, Bao X M, Zou J P, et al. Angew. Chem., Int. Ed. 2001, 40: 1490--1493.
[12] Gong D, Grimes C A, Varghese O K, et al. J. Mater. Res., 2001, 16: 3331--3334.
[13] Varghese O K, Gong D, Paulose M, et al. J. Mater. Res., 2003, 18: 156--165.
[14] Bickley R I, Gonzalez-Carreno T, Lees J. J. Solid State Chem., 1991, 92: 178--190.
[15] Bacsa R R, KiWi J. J. Appl. Catal. B : Environ, 1998, 16: 19--29.
[16] 赵转清, 姚素薇, 张卫国, 等. 物理化学学报, 2002, 18 (5): 473-476.
文章导航

/