研究论文

低温化学气相渗透法制备Cf/TaC复合材料的研究

  • 陈招科 ,
  • 熊翔 ,
  • 肖鹏 ,
  • 李国栋 ,
  • 黄伯云
展开
  • 中南大学粉末冶金国家重点实验室, 长沙 410083

收稿日期: 2006-04-24

  修回日期: 2006-06-26

  网络出版日期: 2007-03-20

Research of Cf/TaC Composites Prepared by Low Temperature Chemical Vapor Infiltration (CVI) Process

  • CHEN Zhao-Ke ,
  • XIONG Xiang ,
  • XIAO Peng ,
  • LI Guo-Dong ,
  • HUANG Bo-Yun
Expand
  • State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China

Received date: 2006-04-24

  Revised date: 2006-06-26

  Online published: 2007-03-20

摘要

利用TaCl5-Ar-C3H6反应体系, 用化学气相渗透(CVI)的方法, 在炭毡中炭纤维表面沉积TaC. 研究了温度对涂层的沉积速率、沉积均匀性、物相组成、微晶尺寸和微观生长形貌的影响. 研究结果表明: 沉积速率随沉积温度升高先增加后减小, 在950℃时达到最大值, 在900℃时沉积均匀性最好; 在800~1000℃范围内能沉积出结晶度较好的TaC涂层, 随着温度升高, 微晶尺寸增大; TaC在炭纤维表面为岛状生长模式; 随温度升高, 岛尺寸先增加后减小, 岛扩散能力增强, 沉积岛之间相互链接融合.

本文引用格式

陈招科 , 熊翔 , 肖鹏 , 李国栋 , 黄伯云 . 低温化学气相渗透法制备Cf/TaC复合材料的研究[J]. 无机材料学报, 2007 , 22(2) : 287 -292 . DOI: 10.3724/SP.J.1077.2007.00287

Abstract

TaC was deposited by a chemical vapor infiltration(CVI) method with TaCl5-Ar-C3H6 system in the carbon fiber felt. The influences of temperature on CVI deposition rate, deposition uniformity, phase composition, crystallization size and surface growth morphology of TaC coating in carbon fiber felt were studied. The experimental results show that, the deposition rate increases firstly with the rising of temperature, reaches its maximum value at 950℃ and then decreases; at 900℃, the deposition uniformity is the best; the highly crystalline TaC can be deposited between 800℃ and 1000℃ and the crystalline size increases at elevated temperature; it is island-like growth model of TaC on the carbon fiber between 800℃ and 1000℃; with the rising of deposition temperature, the sizes of the deposition islands increase firstly and then decrease; the diffusion ability of the deposition islands increases, and the deposition islands link and melt each other at elevated temperature.

参考文献

[1] 马福康, 邱向东, 贾厚生,等译. 铌与钽, 第1版. 长沙: 中南工业大学出版社, 1997. 19.
[2] 闫志巧, 熊翔, 肖鹏, 等(YAN Zhi-Qiao, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (5): 1195--1200.
[3] 崔红, 苏君明, 李瑞珍, 等. 西北工业大学学报, 2000, 18 (4): 669--673.
[4] 李国栋, 熊翔, 黄伯云. 中国有色金属学报, 2005, 15 (4): 565--571.
[5] 何捍卫, 周科朝, 熊翔. 稀有金属材料与工程, 2004, 33 (5): 490--493.
[6] Sinani I L, Chuzhko R K, Chernikov Yu P. Inorganic Materials, 1998, 34 (4): 342--344.
[7] Sinani I L, Chuzhko R K, Chernikov Yu P. Neorg. Mater., 1995, 31 (5): 663--667.
[8] Chuzhko R K, Repnikov N N, Sinani I L. Zh. Fiz. Khim., 1993, 67 (5): 1024--1027.
[9] David W. Graham, Stinton David P. Journal of the American Ceramic Society, 1994, 77 (9): 2298.
[10] SAYIR A. Journal of Materials Science., 2004, 39: 5995--6003.
[11] Kim C, Grummon D S, Gottstein G. Scripta Metallurgica et Materialia. 1991, 25 (10): 2351--2356.
[12] Courtright E L, Prater J T, Holcomb G R, et al. Oxidation of Metals (Historical Archive), 1991, 36 (5-6): 423--437.
[13] Patterson M C L a, He S. Materials and Manufacturing Processes, 1996, 11 (3): 367--379.
[14] Kim C, Grummon D S. Scripta Metallurgica et Materialia, 1991, 25 (10): 2351--2356.
[15] 孟广耀. 化学气相淀积与无机新材料. 北京: 科学出版社, 1984.
[16] 肖鹏, 徐永东, 黄伯云(XIAO Peng, et al). 无机材料学报(Journal of Inorganic Materials), 2002, 17 (4): 877--881.
[17] 王恩哥. 物理学进展, 2003, 23 (1): 1--60.

文章导航

/